Skip to main content
Log in

Extraction of Proteins from Switchgrass Using Aqueous Ammonia within an Integrated Biorefinery

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Switchgrass (Panicum vergatum) is a potential feedstock for future cellulosic biorefineries. Such a feedstock may also provide protein, most likely for use as an animal feed. In this paper, we present a potential scheme for integrating fiber processing with extractions to obtain both sugar and protein products from switchgrass pretreated using Ammonia Fiber Expansion (AFEX). Solutions of 3% aqueous ammonia at pH 10.5 provided optimal extraction of proteins. Addition of the nonionic surfactant Tween-80 improved protein recovery for AFEX-treated materials. It was determined that an extraction following AFEX solubilized approximately 40% of the protein, while a subsequent hydrolysis solubilized much of the remaining protein while producing 325 g sugar per kg biomass. The remaining insoluble residue contained very little protein or ash, making it ideal for heat and power production. In contrast, an extraction following hydrolysis solubilized only 68% of the original protein in the biomass, while obtaining slightly higher sugar yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lin, Y., & Tanaka, S. (2006). Applied Microbiology and Biotechnology, 69, 627–642.

    Article  CAS  Google Scholar 

  2. Greene, N. (2003). Growing Energy, Natural Resources Defense Council.

  3. Sanderson, M. A., Reed, R. L., McLaughlin, S. B., Wullschleger, S. D., Conger, B. V., & Parrish, D. J. (1996). Bioresource Technology, 56, 83–93.

    Article  CAS  Google Scholar 

  4. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y., Holtzapple, M., et al. (2005). Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

  5. Sulbaran-de-Ferrer, B., Aristiguieta, M., Dale, B., Ferrer, A., & Ojeda-de-Rodriguez, G. (2003). Applied Biochemistry and Biotechnology, 105–108, 155–164.

    Article  Google Scholar 

  6. Teymouri, F., Laureano-Perez, L., Alizadeh, H., & Dale, B. (2005). Bioresource Technology, 96, 2014–2018.

    Article  CAS  Google Scholar 

  7. Holtzapple, M., Jun, J., Ashok, G., Patibandla, S., & Dale, B. (1991). Applied Biochemistry and Biotechnology, 28–29, 59–74.

    Article  Google Scholar 

  8. Ferrer, A., Byers, F. M., Sulbarán De Ferrer, B., Dale, B. E., & Aiello, C. (2000). Applied Biochemistry and Biotechnology, 84–86, 163–179.

    Article  Google Scholar 

  9. Alizadeh, H., Teymouri, F., Gilbert, T., & Dale, B. (2005). Applied Biochemistry and Biotechnology, 121–124, 1133–1141.

    Article  Google Scholar 

  10. Ordonez, C., Asenjo, M., Benitez, C., & Gonzalez, J. (2001). Bioresource Technology, 78, 187–190.

    Article  CAS  Google Scholar 

  11. Lawhon, J. (1986). US Patent #4,624,805. Nov 25, 1986.

  12. El-Adaway, T., Rahma, E., El-Bedawey, A., & Gafar, A. (2001). Food Chemistry, 74, 455–462.

    Article  Google Scholar 

  13. Park, S., & Bean, S. (2003). Journal of Agricultural and Food Chemistry, 51, 7050–7054.

    Article  CAS  Google Scholar 

  14. Betschart, A., & Kinsella J. (1973). Journal of Agricultural and Food Chemistry, 21(1), 60–65.

    Article  CAS  Google Scholar 

  15. Fernandez, S., Padilla, A., & Mucciarelli, S. (1999). Plant Foods for Human Nutrition 54, 251–259.

    Article  CAS  Google Scholar 

  16. Fiorentini, R., & Galoppini, C. (1981). Journal of Food Science 46, 1514–1520.

    Article  Google Scholar 

  17. De La Rosa, L. B., Reshamwala, S., Latimer, V., Shawky, B., Dale, B., & Stuart, E. (1994). Applied Biochemistry and Biotechnology, 45–46, 483–497.

    Article  Google Scholar 

  18. Urribarrí, L., Ferrer, A., & Colina, A. (2005). Applied Biochemistry and Biotechnology, 121–124, 721–730.

    Article  Google Scholar 

  19. NREL. (2004). Chemical Analysis and Testing (CAT) Standard Procedures, National Renewable Energy Laboratory.

  20. Lovrien, R., & Matulis, D. (1995). Current Protocols in Protein Science, 3.4.1–3.4.24.

  21. Madakadze, I., Stewart, K., Peterson, P., Coulman, B., & Smith, D. (1999). Crop Science, 39, 552–557.

    Article  Google Scholar 

  22. Allan, G., Parkinson, S., Booth, M., Stone, D., Rowlamd, S., Frances, J., & Warner-Smith, R. (1999). Aquaculture, 186, 293–310.

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this project was provided by the Midwest Consortium for Biobased Products and Bioenergy under contract number DE-FG36-04GO14220 from the United States Department of Energy. Additional funding was provided by the Michigan Research Foundation. We would like to thank Dr. David Bransby of Auburn University for his generous donation of the switchgrass material used in this project. We would also like to thank Dr. Joseph Leykam at the Macromolecular Structure, Sequencing, and Synthesis Facility at Michigan State University for performing the amino acid analyses. In addition, we thank Drs. Fred Eller and Bruce Dien at the USDA’s National Center for Agricultural Utilization Research for their support in the early stages of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan Bals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bals, B., Teachworth, L., Dale, B. et al. Extraction of Proteins from Switchgrass Using Aqueous Ammonia within an Integrated Biorefinery. Appl Biochem Biotechnol 143, 187–198 (2007). https://doi.org/10.1007/s12010-007-0045-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-0045-0

Keywords

Navigation