Skip to main content
Log in

RNA synthetic activity of glutamate dehydrogenase

Determination of enzyme purity, RNA characteristics, and deamination/amination ratio

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The activity of glutamate dehydrogenase (GDH), an important enzyme in carbon and nitrogen metabolism, is routinely assayed by photometry. The RNA synthetic activity of the enzyme provides new technologies for assaying its activity. The enzyme was made to synthesize RNAs in the absence of DNA and total RNA but with different mixes of the four nucleoside triphosphates (NTPs) in order to investigate the RNA characteristics. RNase VI (hydrolyzes base-paired residues) digested the poly (U,A) RNA completely because the U and A residues were evenly distributed to produce many base-paired regions. Therefore, the synthesis of RNA by GDH was by random addition of NTPs. The RNA synthetic activity of the enzyme was at least 50-fold more active in the deamination than in the amination direction, thus providing a robust technology forassay of the enzyme’s activity. cDNAs prepared from the RNAs were subjected to restriction fragment differential display polymerase chain reaction analyses. Sequencing of the cDNA fragments showed that some of the RNA synthesized by GDH shared sequence homology with total RNA. Database searches showed that the RNA fragments shared sequence homologies with the G proteins, adenosine triphosphatase, calmodulin, phosphoenol pyruvate (PEP) carboxylase, and PEP carboxykinase, thus explaining the molecular mode of their functions in signal transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van Laere, A. J. (1988), J. Gen. Microbiol. 134, 1597–1601.

    Google Scholar 

  2. Yeung, A. T., Turner, K. J., Bascomb, N. F., and Schmidt, R. R. (1981), Anal. Biochem. 110, 216–228.

    Article  CAS  Google Scholar 

  3. Loulakakis, K. A. and Roubelakis-Angelakis, K. A. (1996), Physiol. Plant 96, 29–35.

    Article  CAS  Google Scholar 

  4. Stewart, G. R., Shatilov, V. R., Turnbull, M. H., Robinson, S. A., and Goodall, R. (1995), Aust. J. Plant Physiol. 22, 805–809.

    Article  CAS  Google Scholar 

  5. Frieden, C. (1959), J. Biol. Chem. 234, 2891–2896.

    CAS  Google Scholar 

  6. Robinson, S. A., Stewart, G. R., and Phillips, R. (1992), Plant Physiol. 98, 1190–1195.

    CAS  Google Scholar 

  7. Bergstrom, D. W., Monreal, C. M., Millette, J. A., and King, D. J. (1998), Soil Sci. Soc. Am. J. 62, 1302–1308.

    Article  CAS  Google Scholar 

  8. Cammaerts, D. and Jacobs, M. (1985), Planta 163, 517–526.

    Article  CAS  Google Scholar 

  9. Osuji, G. O. and Madu, W. C. (1996), Phytochemistry 42, 1491–1498.

    Article  CAS  Google Scholar 

  10. Osuji, G. O. and Madu, W. C. (1995), Phytochemistry 39, 495–503.

    Article  CAS  Google Scholar 

  11. Osuji, G. O., Haby, V. A., Beyene, A., Madu, W. C., and Mangaroo, A. S. (1997/98), Biol. Plant 40, 389–398.

    Article  CAS  Google Scholar 

  12. Osuji, G. O. (1997), Soil Sci. Plant Nutr. 43, 1159–1164.

    CAS  Google Scholar 

  13. Osuji, G. O., Reyes, J. C., and Mangaroo, A. S. (1998), J. Agric. Food Chem. 46, 2395–2401.

    Article  CAS  Google Scholar 

  14. West, S. M. and Price, N. C. (1988), Biochem J. 251, 135–139.

    CAS  Google Scholar 

  15. Frieden, C. (1971), Annu. Rev. Biochem. 40, 653–696.

    Article  CAS  Google Scholar 

  16. Osuji, G. O., Braithwaite, C., Pointer, R., and Reyes, J. (1999), J. Agric. Food Chem. 47, 3345–3351.

    Article  CAS  Google Scholar 

  17. Osuji, G. O., Mangaroo, A. S., Reyes, J., Bulgin, A., and Wright, V. (2003/4), Biol. Plant 47, 45–52.

    Article  CAS  Google Scholar 

  18. Osuji, G. O., Braithwaite, C., Fordjour, K., Madu, W. C., Beyene, A., Roberts, P. S., and Wright, V. (2003), Prep. Biochem. Biotechnol. 33, 13–28.

    Article  CAS  Google Scholar 

  19. Loyola-Vargas, V. M. and De Jimenez, E. S. (1984), Plant Physiol. 76, 536–540.

    CAS  Google Scholar 

  20. Grierson, D., Slater, A., Speirs, J., and Tucker, G. A. (1985), Planta 163, 263–271.

    Article  CAS  Google Scholar 

  21. Abts, H. F., Wels, T., Breuhahn, K., and Ruzicka, T. (2000), in Stress Response: Methods and Protocols, Keyse, S. M., ed., Humana, Totowa, NJ, pp. 340–366.

    Google Scholar 

  22. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zheng, Z., Miller, W., and Lipman, D. J. (1997), Nucleic Acids Res. 25, 3389–3402.

    Article  CAS  Google Scholar 

  23. Osuji, G. O., Madu, W. C., Braithwaite, C., Beyene, A., Roberts, P. S., Bulgin, A., and Wright, V. (2003/4), Biol. Plant 47, 195–202.

    Article  CAS  Google Scholar 

  24. Meyersfeld, D. R. and Coetzer, T. L. (2003), BioTechniques 34, 270–272.

    CAS  Google Scholar 

  25. Negishi, M. and Katoh, H. (2002), J. Biochem. 132, 157–166.

    CAS  Google Scholar 

  26. Sternweis, P. C. (1996), in G Proteins in Signal Transduction, Heldin, C.-H. and Purton, M., eds., Chapman & Hall, London, pp. 285–301.

    Google Scholar 

  27. Harden, T. K., Boyer, J. L., and Dougherty, R. W. (2001), J. Recep. Signal Transduct. 21, 167–190.

    Article  CAS  Google Scholar 

  28. Bethke, P. C. and Jones, R. L. (1994), Plant Cell 6, 277–285.

    Article  CAS  Google Scholar 

  29. Mikkelsen, J. D., Berglund, L., Nielsen, K. K., Christiansen, H., and Bojsen, K. (1992), in Advances in Chitin and Chitosan, Brine, C. J., Sandford, P. A., and Zikakis, J. P., eds., Elsevier, New York, pp. 344–353.

    Google Scholar 

  30. Luttge, U. (1998), in Photosynthesis: A Comprehensive Treatise, Raghavendra, A. S., ed., Cambridge University Press, Cambridge, UK, pp. 136–149.

    Google Scholar 

  31. Ameziane, R., Bernhard, K., and Lightfoot, D. (2000), Plant Soil 221, 47–57.

    Article  CAS  Google Scholar 

  32. Osuji, G. O. and Madu, W. C. (1997), Can. J. Bot. 75, 1070–1078.

    Article  CAS  Google Scholar 

  33. Osuji, G. O. and Madu, W. C. (1997), Phytochemistry 46, 817–825.

    Article  CAS  Google Scholar 

  34. Imamoto, F. (1973), J. Mol. Biol. 74, 113–136.

    Article  CAS  Google Scholar 

  35. Osuji, G. O. and Braithwaite, C. (1999), J. Agric. Food Chem. 47, 3332–3344.

    Article  CAS  Google Scholar 

  36. Carrington, J. C. and Ambros, V. (2003), Science 301, 336–338.

    Article  CAS  Google Scholar 

  37. Semizarov, D., Frost, L., Sarthy, A., Kroeger, P., Halbert, D. N., and Fesik, S. W. (2003), Proc. Natl. Acad. Sci. USA 100, 6347–6352.

    Article  CAS  Google Scholar 

  38. Osuji, G. O., Haby, V. A., Chessman, D. J., and Leonard, A. T. (2004), Photosynthetica 42, 307–312.

    Article  CAS  Google Scholar 

  39. Gesteland, R. F., Cech, T. R., and Atkins, J. F. (1998), The RNA World, CSHL Press, Cold Spring Harbor, New York.

    Google Scholar 

  40. Robinson, S. A., Slade, A. P., Fox G. G., Phillips, R., Ratcliffe, R. G., and Stewart, G. R. (1990), Plant Physiol. 95, 501–516.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Godson O. Osuji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osuji, G.O., Konan, J. & M’Mbijjewe, G. RNA synthetic activity of glutamate dehydrogenase. Appl Biochem Biotechnol 119, 209–228 (2004). https://doi.org/10.1007/s12010-004-0003-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-004-0003-z

Index Entries

Navigation