Skip to main content
Log in

Numerical investigation on heat transfer of a nano-fluid saturated vertical composite porous channel packed between two fluid layers

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

This numerical study investigates the effect of internal heat on heat transfer in a nanofluid saturated vertical channel with a porous matrix layer sandwiched between two fluid layers. The Darcy–Forchheimer equation is used to model flow in a porous material. To characterize the nanofluid, the Tiwari and Das model is used. The transport parameters of the fluids are constant in all three locations. The Finite element Galerkin method is used to convert governing equations into systems of equations. The behavior of nanofluid is investigated by taking the solid volume fraction into account. The flow characteristics were investigated for various values of the relevant parameters in the model, which includes Grashof number, Brinkman number, solid volume fraction, porous parameter, interphase heat transfer, internal heat generation, Forchheimer parameter, nanofluid to solid porous matrix thermal conductivity ratio parameter, porosity of the medium using water as the base fluid and copper as the nanoparticle. To study flow and heat transmission, five different types of nanoparticles are used. Silver nanoparticles achieve the maximum value of the Nusselt number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bello, O., Reinicke, K.M., Teodoriu, C.: Particle holdup profiles in horizontal gas-liquid- solid multiphase flow pipeline. Chem. Eng. Technol. 28(12), 1546–1553 (2005)

    Article  Google Scholar 

  2. Miao, Q., Zhu, J., Barghi, S., Chuangzhi, W., Yin, X., Zhou, Z.: Modeling biomass gasification in circulating fluidized beds. Renew. Energy 50, 65–661 (2013)

    Article  Google Scholar 

  3. Scott, D.S., Rao, P.K.: Transport of solids by gas-liquid mixtures in horizontal pipes. Can. J. Chem. Eng. 49(3), 302–309 (1971)

    Article  Google Scholar 

  4. Mao, F., Desir, F.K., Ebadian, M.A.: Pressure drop measurment and correlation for three-phase fow of simulated nuclear waste in a horizontal pipe. Int. J. Multiph. Flow 23(2), 397–402 (1997)

    Article  Google Scholar 

  5. Orell, A.: The effect of gas injection on the hydraulic transport of slurries in horizontal pipes. Chem. Eng. Sci. 62(23), 6659–6676 (2007)

    Article  Google Scholar 

  6. Ghasemi, M.H., Hoseinzadeh, S., Heyns, P.S., Wilke, D.N.: Numerical analysis of non-Fourier heat transfer in a solid cylinder with dual-phase-lag phenomenon. Comput. Model. Eng. Sci. 122(1), 399–414 (2020)

    Google Scholar 

  7. Vafai, K., Kim, S.J.: Fluid mechanics of the interface region between a porous medium and a fluid layer—an exact solution. Int. J. Heat Fluid Flow 11(3), 254–256 (1990)

    Article  Google Scholar 

  8. Alazmi, B., Vafai, K.: Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid Layer. Int. J. Heat Mass Transf. 44, 1735–1749 (2001)

    Article  MATH  Google Scholar 

  9. Kuznetsov, A.V., Vafai, K.: Development and investigation of three-phase model of the mushy zone for analysis of porosity formation in solidifying castings. Int. J. Heat Mass Transf. 38(14), 2557–2567 (1995)

    Article  MATH  Google Scholar 

  10. Chen, Z., Ewing, R.E.: Comparison of various formulations of three-phase flow in porous media. J. Comput. Phys. 132, 362–373 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Malashetty, M.S., Umavathi, J.C., Prathap Kumar, J.: Two fluid flow and heat transfer in an inclined channel containing porous and fluid layer. Heat Mass Transf. 40, 871–876 (2004)

    Article  Google Scholar 

  12. Malashetty, M.S., Umavathi, J.C., Prathap Kumar, J.: Flow and heat transfer in an inclined channel containing fluid layer sandwiched between two porous layers. J. Porous Media 8(5), 443–453 (2005)

    Article  Google Scholar 

  13. Cheng, L., Ghajar, A.J.: Frontiers and progress in multiphase flow and heat transfer. Heat Transf. Eng. 40(16), 1299–1300 (2018)

    Article  Google Scholar 

  14. Dong, J., Inthavong, K., Tu, J. (2016). Multiphase Flows in Biomedical Applications. In: Yeoh, G. (eds) Handbook of Multiphase Flow Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-4585-86-6_16-1

  15. Umavathi, J.C., Malashetty, M.S., Mateen, A.: Fully developed flow and heat transfer in a horizontal channel containing electrically conducting fluid sandwiched between two fluid layers. Int. J. Appl. Mech. Eng. 9(4), 781–794 (2004)

    MATH  Google Scholar 

  16. Umavathi, J.C., Chamkha, A.J., Manjula, M.H., Al Mudhaf, A.: Flow and heat transfer of a couple-stress fluid sandwiched between viscous fluid layers. Can. J. Phys. 83, 05–035 (2005)

    Article  Google Scholar 

  17. Umavathi, J.C., Liu, I.C., Prathap Kumar, J., Shaik Meera, D.: Unsteady flow and heat transfer of porous media sandwiched between viscous fluids. Appl. Math. Mech. 31, 1497–1516 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Umavathi, J.C., Hemavathi, K.: Flow and heat transfer of composite porous medium saturated with nanofluid. Propuls. Power Res. 8(2), 173–181 (2019)

    Article  Google Scholar 

  19. Patra, A.K., Nayak, M.K., Misra, A.: Viscosity of nanofluids-a Review. Int. J. Thermofluid Sci. Technol. 7(2), 070202 (2020)

    Article  Google Scholar 

  20. Molli, S., Naikoti, K.: MHD natural convective flow of Cu-water nanofluid over a past infinite vertical plate with the presence of time dependent boundary condition. Int. J. Thermofluid Sci. Technol 7(4), 070404 (2020)

    Article  Google Scholar 

  21. Hoseinzadeh, S., Taheri Otaghsara, S.M., Zakeri Khatir, M.H., Heyns, P.S.: Numerical investigation of thermal pulsating alumina/water nanofluid flow over three different cross-sectional channel. Int. J. Numer. Methods Heat Fluid Flow 30(7), 3721–3735 (2020)

    Article  Google Scholar 

  22. Nakayama, A., Kokudai, T., Koyama, H.: Non-Darcian boundary layer flow and forced convective heat transfer over a flat plate in a fluid-saturated porous medium. ASME J. Heat Transf. 112, 157–162 (1990)

    Article  Google Scholar 

  23. Bear, J.: Dynamics of Fluids in Porous Media. Elsevier, New York (1972)

    MATH  Google Scholar 

  24. Nield, D.A., Bejan, A.: Convection in Porous Media, 4th edn. Springer, New York (2013)

    Book  MATH  Google Scholar 

  25. Mahmoudi, Y.: Constant wall heat flux boundary condition in micro-channels filled with a porous medium with internal heat generation under local thermal non-equilibrium condition. Int. J. Heat Mass Transf. 85, 524–542 (2015)

    Article  Google Scholar 

  26. Dehghan, M., Valipour, M.S., Saedodin, S., Mahmoudi, Y.: Investigation of forced convection through entrance region of a porous-filled microchannel: an analytical study based on the scale analysis. Appl. Therm. Eng. 99, 446–454 (2016)

    Article  Google Scholar 

  27. Yang, K., Vafai, K.: Analysis of temperature gradient bifurcation in porous media—an exact solution. Int. J. Heat Mass Transf. 53, 4316–4325 (2010)

    Article  MATH  Google Scholar 

  28. Dehghan, M., Valipour, M.S., Saedodin, S.: Microchannels enhanced by porous materials: heat transfer enhancement or pressure drop increment. Energy Convers. Manag. 110, 22–32 (2016)

    Article  Google Scholar 

  29. Dickson, C., Torabi, M., Karimi, N.: First and second law analyses of nanofluid forced convection in a partially-filled porous channel-the effects of local thermal non-equilibrium and internal heat sources. Appl. Therm. Eng. 103, 459–480 (2016)

    Article  Google Scholar 

  30. Hoseinzadeh, S., Heyns, P.S., Chamkha, A.J., Shirkhani, A.: Thermal analysis of porous fins enclosure with the comparison of analytical and numerical methods. J. Therm. Anal. Calorim. 138, 727–735 (2019)

    Article  Google Scholar 

  31. Ghanbari Ashrafi, T., Hoseinzadeh, S., Sohani, A., Shahverdian, M.H.: Applying homotopy perturbation method to provide an analytical solution for Newtonian fluid flow on a porous flat plate. Math Meth. Appl. Sci. 44, 7017–7030 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hoseinzadeh, S., Sohani, A., Ghanbari Ashraf, T.: An artifcial intelligence-based prediction way to describe fowing a Newtonian liquid/gas on a permeable fat surface. J. Therm. Anal. Calorim. (2021). https://doi.org/10.1007/s10973-019-08203-x

    Article  Google Scholar 

  33. Tiwari, R.K., Das, M.K.: Heat transfer augmentation in a two- sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50, 2002–2018 (2007)

    Article  MATH  Google Scholar 

  34. Ghasemi, B., Aminossadati, S.M.: Natural convection heat transfer in an inclined enclosure filled with a water-CuO nanofluid. Numer. Heat Transf. 55, 807–823 (2009)

    Article  Google Scholar 

  35. Muthtamilselvan, M., Kandaswamy, P., Lee, J.: Heat transfer enhancement of copper-water nanofluids in a lid-driven enclosure. Commn. Nonlinear Sci. Numer. Simul. 15, 1501–1510 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Vajravelu, K., Prasad, K.V., Abbasandy, S.: Convective transport of nanoparticles in multi-layer fluid flow. Appl. Math. Mech.-Eng. Ed. 34, 177–188 (2013)

    Article  MathSciNet  Google Scholar 

  37. Seetharamu, K.N., Leela, V., Kotloni, N.: Numerical investigation of heat transfer in a micro-porous-channel under variable wall heat flux and variable wall temperature boundary conditions using local thermal non-equilibrium model with internal heat generation. Int. J. Heat Mass Transf. 112, 201–215 (2017)

    Article  Google Scholar 

  38. Brinkman, H.C.: Viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20, 571–581 (1952)

    Article  Google Scholar 

  39. Maxwell, J.: A Treatse on Electricity and Magnetism, 2nd edn. Oxford University Press, Cambridge (1904)

    Google Scholar 

  40. Lewis, R.W., Nithiarasu, P., Seetharamu, K.N.: Fundamentals of Finite Element Method for Heat and Fluid Flow. Wiley, Hoboken (2004)

    Book  Google Scholar 

  41. Nithiarasu, P., Lewis, R.W., Seetharamu, K.N.: Fundamentals of Finite Element Method for Heat and Mass Transfer, 2nd edn. Wiley, Hoboken (2016)

    MATH  Google Scholar 

  42. Agarwal, K.M., Tyagi, R.K., Saxena, K.K.: Deformation analysis of Al alloy AA2024 through equal channel angular pressing for aircraft structures. Adv. Mater. Process. Technol. 8(1), 828–842 (2022)

    Google Scholar 

  43. Bandhu, D., Kumari, S., Prajapati, V., Saxena, K.K., Abhishek, K.: Experimental investigation and optimization of RMDTM welding parameters for ASTM A387 grade 11 steel. Mater. Manuf. Process. 36(13), 1524–1534 (2021)

    Article  Google Scholar 

  44. Durga Prasad, C., Joladarashi, S., Ramesh, M.R., Srinath, M.S.: Microstructure and tribological resistance of flame sprayed CoMoCrSi/WC-CrC-Ni and CoMoCrSi/WC-12Co composite coatings remelted by microwave hybrid heating. J. Bio Tribo-Corros. 6, 124 (2020). https://doi.org/10.1007/s40735-020-00421-3

    Article  Google Scholar 

  45. Durga Prasad, C., Joladarashi, S., Ramesh, M.R.: Comparative investigation of HVOF and flame sprayed CoMoCrSi coating. Am. Inst. Phys. 2247, 050004 (2020). https://doi.org/10.1063/5.0003883

    Article  Google Scholar 

  46. Durga Prasad, C., Jerri, A., Ramesh, M.R.: Characterization and sliding wear behavior of iron based metallic coating deposited by HVOF process on low carbon steel substrate. J. Bio Tribo-Corros. 6, 69 (2020). https://doi.org/10.1007/s40735-020-00366-7

    Article  Google Scholar 

  47. Beniwal, G., Saxena, K.K.: A review on pore and porosity in tissue engineering. Mater. Today Proc. 44, 2623–2628 (2021)

    Article  Google Scholar 

  48. Dhawan, A., Gupta, N., Goyal, R., Saxena, K.K.: Evaluation of mechanical properties of concrete manufactured with fly ash, bagasse ash and banana fibre. Mater. Today Proc. 44, 17–22 (2021)

    Article  Google Scholar 

  49. Durga Prasad, C., Joladarashi, S., Ramesh, M.R., Srinath, M.S., Channabasappa, B.H.: Effect of microwave heating on microstructure and elevated temperature adhesive wear behavior of HVOF deposited CoMoCrSi-Cr3C2 composite coating. Surf. Coat. Technol. 374, 291–304 (2019). https://doi.org/10.1016/j.surfcoat.2019.05.056

    Article  Google Scholar 

  50. Durga Prasad, C., Joladarashi, S., Ramesh, M.R., Srinath, M.S., Channabasappa, B.H.: Development and sliding wear behavior of Co-Mo-Cr-Si cladding through microwave heating. SILICON 11, 2975–2986 (2019). https://doi.org/10.1007/s12633-019-0084-5

    Article  Google Scholar 

  51. Durga Prasad, C., Joladarashi, S., Ramesh, M.R., Srinath, M.S., Channabasappa, B.H.: Microstructure and tribological behavior of flame sprayed and microwave fused CoMoCrSi/CoMoCrSi-Cr3C2 coatings. Mater. Res. Express 6, 026512 (2019). https://doi.org/10.1088/2053-1591/aaebd9

    Article  Google Scholar 

  52. Durga Prasad, C., Joladarashi, S., Ramesh, M.R., Srinath, M.S., Channabasappa, B.H.: Influence of microwave hybrid heating on the sliding wear behaviour of HVOF sprayed CoMoCrSi coating. Mater. Res. Express 5, 086519 (2018). https://doi.org/10.1088/2053-1591/aad44e

    Article  Google Scholar 

  53. Durga Prasad, C., Joladarashi, S., Ramesh, M.R., Sarkar, A.: High temperature gradient cobalt based clad developed using microwave hybrid heating. Am. Inst. Phys. 1943, 020111 (2018). https://doi.org/10.1063/1.5029687

    Article  Google Scholar 

  54. Gupta, N., Gupta, A., Saxena, K.K., Shukla, A., Goyal, S.K.: Mechanical and durability properties of geopolymer concrete composite at varying superplasticizer dosage. Mater. Today Proc. 44, 12–16 (2021)

    Article  Google Scholar 

  55. Kodli, B.K., Karre, R., Saxena, K.K., Pancholi, V., Dey, S.R., Bhattacharjee, A.: Flow behaviour of TiHy 600 alloy under hot deformation using gleeble 3800. Adv. Mater. Process. Technolog. 3(4), 490–510 (2017)

    Article  Google Scholar 

  56. Kumar, K.B., Saxena, K.K., Dey, S.R., Pancholi, V., Bhattacharjee, A.: Peak stress studies of hot compressed TiHy 600 alloy. Mater. Today Proc. 4(8), 7365–7374 (2017)

    Article  Google Scholar 

  57. Kumar, N., Bharti, A., Saxena, K.K.: A re-investigation: effect of powder metallurgy parameters on the physical and mechanical properties of aluminium matrix composites. Mater. Today Proc. 44, 2188–2193 (2021)

    Article  Google Scholar 

  58. Durga Prasad, C., Lingappa, S., Joladarashi, S., Ramesh, M.R., Sachin, B.: Characterization and sliding wear behavior of CoMoCrSi+Flyash composite cladding processed by microwave irradiation. Mater. Today Proc. 46, 2387–2391 (2021). https://doi.org/10.1016/j.matpr.2021.01.156

    Article  Google Scholar 

  59. Reddy, M.S., Durga Prasad, C., Patil, P., Ramesh, M.R., Rao, N.: Hot corrosion behavior of plasma sprayed NiCrAlY/TiO2 and NiCrAlY/Cr2O3/YSZ cermets coatings on alloy steel. Surf. Interfaces 22, 100810 (2021). https://doi.org/10.1016/j.surfin.2020.100810

    Article  Google Scholar 

  60. Durga Prasad, C., Joladarashi, S., Ramesh, M.R., Srinath, M.S., Channabasappa, B.H.: Comparison of high temperature wear behavior of microwave assisted HVOF sprayed CoMoCrSi-WC-CrC-Ni/WC-12Co composite coatings. SILICON 12, 3027–3045 (2020). https://doi.org/10.1007/s12633-020-00398-1

    Article  Google Scholar 

  61. Vasudev, H., Prashar, G., Thakur, L., Bansal, A.: Electrochemical corrosion behavior and microstructural characterization of HVOF sprayed inconel718-Al2O3 composite coatings. Surf. Rev. Lett. 29, 2250017 (2022). https://doi.org/10.1142/S0218625X22500172

    Article  Google Scholar 

  62. Vasudev, H., Prakash, C.: Surface engineering and performance of biomaterials: editorial. J. Electrochem. Sci. Eng. 13(1), 1–3 (2023). https://doi.org/10.5599/jese.1698

    Article  Google Scholar 

  63. Singh, M., Vasudev, H., Singh, M.: Surface protection of SS-316L with boron nitride based thin films using radio frequency magnetron sputtering technique: original scientific paper. J. Electrochem. Sci. Eng. 12(5), 851–863 (2022). https://doi.org/10.5599/jese.1247

    Article  Google Scholar 

  64. Sandhu, K., Singh, G., Singh, S., Kumar, R., Prakash, C., Ramakrishna, S., Królczyk, G., Pruncu, C.I.: Surface characteristics of machined polystyrene with 3D printed thermoplastic tool. Materials. 13, 2729 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Durga Prasad or Hitesh Vasudev.

Ethics declarations

Conflict of interest

None declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagabhushana, P., Ramprasad, S., Prasad, C.D. et al. Numerical investigation on heat transfer of a nano-fluid saturated vertical composite porous channel packed between two fluid layers. Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-023-01379-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-023-01379-5

Keywords

Navigation