Skip to main content

Advertisement

Log in

An interactive study on wear behaviour and mechanical properties of carbonized eggshells filler loaded glass-jute reinforced polyester hybrid bio-composites

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

The aim of the present study is to develop eco-friendly, low cost and light weight plastic based composite material using eggshells (bio-waste) ash as filler material. The study describes the development of carbonized eggshells loaded hybrid glass-jute fibre reinforced (GJFR) polyester bio-composites and reports the effect of fillers loading on its wear behaviour and mechanical properties. Carbonized eggshell ash powder as a filler, glass and jute fibre rovings as hybridized fibre and unsaturated polyester resin as a matrix material were used for the development of novel FRP composites using the pultrusion process. Eggshells ash powder was used in different weight (wt) % as 3.5 wt%, 6.5 wt%, 9.5 wt%, 12.5 wt%, and 15.5 wt%. A pin-on-disc tribometer was employed to analyse the wear behaviour. Two variable load conditions as 30 N and 50 N were selected to wear test runs while sliding speed, sliding distance, and track diameter as 3 m/s, 1500 m, and 60 mm respectively were kept constant. The developed hybrid composites with 9.5 wt% and 3.5 wt% carbonized eggshells filler involvement showed maximum and minimum tensile strength as 75 MPa and 62 MPa respectively. The composites with 12.5 wt% and 3.5 wt% eggshells fillers showed maximum and minimum compressive strength as 99 MPa and 49 MPa respectively. The maximum wear resistance was exhibited by composites with 9.5 wt% filler loading and at 50 N applied load conditions. The carbonized eggshell fillers inclusion in a limited amount was recommended to strengthen the wear resistance of the GJFR polyester composites in combination with tensile and compressive strengths. A scanning electron microscope study was conducted to notice the wearing procedure and tensile and compressive fracture of the GJFRP composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All authors declare that the desired data can be make available as per the demand.

Code availability

Not applicable.

References

  1. Zurale, M.M., Bhide, S.J.: Properties of fillers and reinforcing fibers. Mech. Compos. Mater. 34, 463–472 (1998). https://doi.org/10.1007/BF02254710

    Article  Google Scholar 

  2. Hassan, S.B., Aigbodion, V.S., Patrick, S.N.: Development of polyester/eggshell particulate composites. Tribol. Ind. 34, 217–225 (2012)

    Google Scholar 

  3. Rivera, E.M., Araiza, M., Brostow, W., Castano, V.M., Dıaz-Estrada, J.R., Hernández, R., Rodrıguez, J.R.: Synthesis of hydroxyapatite from eggshells. Mater. Lett. 41, 128–134 (1999). https://doi.org/10.1016/S0167-577X(99)00118-4

    Article  Google Scholar 

  4. Panchal, M., Raghavendra, G., Prakash, M.O., Ojha, S.: Effects of environmental conditions on erosion wear of eggshell particulate epoxy composites. SILICON 10, 627–634 (2018). https://doi.org/10.1007/s12633-016-9505-x

    Article  Google Scholar 

  5. Vigneshwaran, S., Uthayakumar, M., Arumugaprabu, V., Deepak, J.J.R.: Influence of filler on erosion behavior of polymer composites: A comprehensive review. J. Reinforced Plast. Compos. 37, 1011–1019 (2018). https://doi.org/10.1177/0731684418777111

    Article  Google Scholar 

  6. Patnaik, A., Satapathy, A., Mahapatra, S.S., Dash, R.R.: A comparative study on different ceramic fillers affecting mechanical properties of glass—Polyester composites. J. Reinf. Plast. Compos. 28, 1305–1318 (2009). https://doi.org/10.1177/0731684407086589

    Article  Google Scholar 

  7. Ahmed, K.S., Vijayarangan, S., Naidu, A.C.B.: Elastic properties, notched strength and fracture criterion in untreated woven jute–glass fabric reinforced polyester hybrid composites. Mater. Des. 28, 2287–2294 (2007)

    Article  Google Scholar 

  8. Yousif, B.F., El-Tayeb, N.S.M.: Mechanical and wear properties of oil palm and glass fibres reinforced polyester composites. Int. J. Precis. Technol. 1, 213–222 (2009). https://doi.org/10.1504/IJPTECH.2009.02638

    Article  Google Scholar 

  9. Ambekar, S.D., Tripathi, V.K.: Optimization of flexural strength of CFRP hybrid nano composites containing nanoZnO and nanoclay particles. Int. J. Interact. Design Manufact. (IJIDeM). 13, 689–698 (2019). https://doi.org/10.1007/s12008-019-00539-w

    Article  Google Scholar 

  10. Gaylo, R., Farahani, S., Schmueser, D., Pilla, S.: Optimization of a mono-composite leaf spring using a hybrid fiber-layup approach. Int. J. Interact. Des. Manuf. (IJIDeM) 14, 407–421 (2020). https://doi.org/10.1007/s12008-019-00636-w

    Article  Google Scholar 

  11. Landi, D., Vita, A., Germani, M.: Interactive optimization of the resin transfer molding using a general-purpose tool: a case. Int. J. Interact. Des. Manuf. (IJIDeM) 14, 295–308 (2020). https://doi.org/10.1007/s12008-019-00631-1

    Article  Google Scholar 

  12. Ahmed, K.S., Khalid, S.S., Mallinatha, V., Kumar, S.A.: Dry sliding wear behavior of SiC/Al2O3 filled jute/epoxy composites. Mater. Des. 1980–2015(36), 306–315 (2012). https://doi.org/10.1016/j.matdes.2011.11.010

    Article  Google Scholar 

  13. Jain, A., Rawat, P., Singh, K.K.: Wear and frictional behavior of three phased glass/epoxy composite laminate reinforced with MWCNTs. Mater. Today 5, 8112–8120 (2018). https://doi.org/10.1016/j.matpr.2017.11.498

    Article  Google Scholar 

  14. Suresha, B., Kumar, K.S., Seetharamu, S., Kumaran, P.S.: Friction and dry sliding wear behavior of carbon and glass fabric reinforced vinyl ester composites. Tribol. Int. 43, 602–609 (2010). https://doi.org/10.1016/j.triboint.2009.09.009

    Article  Google Scholar 

  15. Andrich, M., Hufenbach, W., Kunze, K., Scheibe, H.J.: Characterisation of the friction and wear behaviour of textile reinforced polymer composites in contact with diamond-like carbon layers. Tribol. Int. 62, 29–36 (2013). https://doi.org/10.1016/j.triboint.2013.01.023

    Article  Google Scholar 

  16. Mohan, N., Mahesha, C.R., Rajaprakash, B.M.: Erosive wear behaviour of WC filled glass epoxy composites. Procedia Eng. 68, 694–702 (2013). https://doi.org/10.1016/j.proeng.2013.12.241

    Article  Google Scholar 

  17. Gupta, A., Singh, H., Walia, R.S.: Hybrid filler composition optimization for tensile strength of jute fibre-reinforced polymer composite. Bull. Mater. Sci. 39, 1223–1231 (2016). https://doi.org/10.1007/s12034-016-1248-1

    Article  Google Scholar 

  18. Fleischer, J., Teti, R., Lanza, G., Mativenga, P., Möhring, H.C., Caggiano, A.: Composite materials parts manufacturing. CIRP Ann. 67, 603–626 (2018). https://doi.org/10.1016/j.cirp.2018.05.005

    Article  Google Scholar 

  19. Fidan, I., Imeri, A., Gupta, A., Hasanov, S., Nasirov, A., Elliott, A., Alifui-Segbaya, F., Nanami, N.: The trends and challenges of fiber reinforced additive manufacturing. Int. J. Adv. Manuf. Technol. 14, 1–18 (2019). https://doi.org/10.1007/s00170-018-03269-7

    Article  Google Scholar 

  20. Anbusagar, N. R. R., Palanikumar, K., & Ponshanmugakumar, A.: Preparation and properties of nanopolymer advanced composites: a review. In: Polymer-based nanocomposites for energy and environmental applications. (pp. 27–73) (2018). https://doi.org/10.1016/B978-0-08-102262-7.00002-7

  21. Fischer, X., Nadeau, J.P.: Research in Interactive Design: Virtual Interactive and Integrated Product Design and Manufacturing for Industrial Innovation. Springer, New York (2011)

    Book  Google Scholar 

  22. Alsyouf, I., Al-Alami, A., Saidam, A.: Implementing product design development methodology for assessing and improving the performance of products. Int. J. Interact. Des. Manuf. (IJIDeM). 9, 225–234 (2015). https://doi.org/10.1007/s12008-015-0281-4

    Article  Google Scholar 

  23. Agrawal, S., Singh, K.K., Sarkar, P.K.: Comparative investigation on the wear and friction behaviors of carbon fiber reinforced polymer composites under dry sliding, oil lubrication and inert gas environment. Mater. Today 5, 1250–1256 (2018). https://doi.org/10.1016/j.matpr.2017.11.208

    Article  Google Scholar 

  24. Singh, P.K., Singh, A.K.: An investigation on the thermal and wear behavior of polymer based spur gears. Tribol. Int. 118, 264–272 (2018). https://doi.org/10.1016/j.triboint.2017.10.007

    Article  Google Scholar 

  25. Raj, M.J.I., Manisekar, K., Gupta, M.: Central composite experimental design applied to the dry sliding wear behavior of Mg/Mica composites. J. Tribol. 141, 011603 (2019). https://doi.org/10.1115/1.4041073

    Article  Google Scholar 

  26. Madhanagopal, A., Gopalakannan, S.: Dry slide wear behavior of boron carbide filled epoxy composites. Mater. Today 5, 7289–7295 (2018). https://doi.org/10.1016/j.matpr.2017.11.397

    Article  Google Scholar 

  27. Lin, L., Schlarb, A.K.: The roles of rigid particles on the friction and wear behavior of short carbon fiber reinforced PBT hybrid materials in the absence of solid lubricants. Tribol. Int. 119, 404–410 (2018). https://doi.org/10.1016/j.triboint.2017.11.024

    Article  Google Scholar 

  28. Selmy, A.I., Abd El-baky, M.A., Hegazy, D.A.: Wear behavior of glass–polyamide reinforced epoxy hybrid composites. J. Thermoplast.Compos. Mater. (2018). https://doi.org/10.1177/0892705718805127

    Article  Google Scholar 

  29. Sharma, N., Singh, K. K., Jain, A., & Kalita, J. J.: Wear and frictional study of MWCNT doped glass fiber reinforced polymer composite under different sliding conditions. In: IOP Conference Series: Materials Science and Engineering (Vol. 455, No. 1, p. 012002). IOP Publishing. (2018). https://doi.org/10.1088/1757-899X/455/1/012002

  30. Kumar, S.S., Raja, V.M.: Processing and determination of mechanical properties of Prosopis juliflora bark, banana and coconut fiber reinforced hybrid bio composites for an engineering field. Compos. Sci. Technol. 208, 108695 (2021). https://doi.org/10.1016/j.compscitech.2021.108695

    Article  Google Scholar 

  31. Sathees Kumar, S.: Effect of natural fiber loading on mechanical properties and thermal characteristics of hybrid polyester composites for industrial and construction fields. Fib. Polym. 21(7), 1508–1514 (2020). https://doi.org/10.1007/s12221-020-9853-4

    Article  Google Scholar 

  32. Sathees Kumar, S., Mugesh Raja, V., Chakravarthy, C., Muthalagu, R.: Determination of mechanical properties and characterization of alkali treated sugarcane bagasse, pine apple leaf and sisal fibers reinforced hybrid polyester composites for various applications. Fib. Polym. 22(6), 1675–1683 (2021). https://doi.org/10.1007/s12221-021-0910-4

    Article  Google Scholar 

  33. Mugesh Raja, V., Sathees Kumar, S.: Exploration of mechanical attributes, thermal behaviors and atomic force analysis of alkali treated hybrid polyester composites for an engineering application. Fibers and Polymers 22(9), 2535–2542 (2021). https://doi.org/10.1007/s12221-021-1252-y

    Article  Google Scholar 

  34. Raja, A.K., Geethan, K., Kumar, S.S., Kumar, P.S.: Influence of mechanical attributes, water absorption, heat deflection features and characterization of natural fibers reinforced epoxy hybrid composites for an engineering application. Fib. Polym. 22(12), 3444–3455 (2021). https://doi.org/10.1007/s12221-021-0222-8

    Article  Google Scholar 

  35. Gupta, A., Singh, H. and Walia, R.S.: Effect of glass fiber and filler volume fraction variation on mechanical properties of GFRP composite. In: Proceedings of the International Conference on Research and Innovations in Mechanical Engineering (pp. 407–414) (2014). Springer, New Delhi. https://doi.org/10.1007/978-81-322-1859-3_38

  36. Gupta, A., Vaishya, R., Khan, K.L.A., Walia, R.S., Singh, H.: Multi-response optimization of hybrid filler composition for pultruded jute fiber reinforced polymer composite. Mater. Res. Express 6(11), 115324 (2019). https://doi.org/10.1088/2053-1591/ab4945

    Article  Google Scholar 

  37. Standard, A. S. T. M. G99: Standard test method for wear testing with a pin-on-disk apparatus. ASTM International, West Conshohocken (2006).

  38. Akbarpour, M.R., Alipour, S., Safarzadeh, A., Kim, H.S.: Wear and friction behavior of self-lubricating hybrid Cu-(SiC+xCNT) composites. Compos. B 158, 92–101 (2019). https://doi.org/10.1016/j.compositesb.2018.09.039

    Article  Google Scholar 

  39. Zum Gahr, K.H.: Microstructure and Wear of Materials. Tribology Series Elsevier, Amsterdam (1987)

    Google Scholar 

  40. Parikh, H.H., Gohil, P.P.: Experimental investigation and prediction of wear behavior of cotton fiber polyester composites. Friction. 5, 183–193 (2017). https://doi.org/10.1007/s40544-017-0145-y

    Article  Google Scholar 

  41. Basavarajappa, S., Arun, K.V., Davim, J.P.: Effect of filler materials on dry sliding wear behavior of polymer matrix composites–a Taguchi approach. J. Miner. Mater. Charact. Eng. 8, 379 (2009). https://doi.org/10.4236/jmmce.2009.85034

    Article  Google Scholar 

  42. Moorthy, S.S., Manonmani, K., Elangovan, T.: An optimization approach to the dry sliding wear behavior of particulate filled glass fiber reinforced hybrid composites. J. Eng. Fibers Fabr. 10, 155892501501000220 (2015). https://doi.org/10.1177/155892501501000213

    Article  Google Scholar 

  43. Kumar, N., Walia, R.S., Angra, S.: Tribological characterization of pultruded hybrid glass-jute fibre reinforced plastic composites from room temperature to 75° C. World J. Eng. (2021). https://doi.org/10.1108/WJE-03-2021-0147

    Article  Google Scholar 

  44. Nayak, S.Y., Srinivas Shenoy, H., Sharma, P., & IqbalAman, S.: Use of egg shell particulate as fillers in e-glass/epoxy composites. In: Proceedings of International Conference on Mechanical Engineering and Industrial Automation Held in Dubai, ISBN: 9788193137321(2015)

  45. Kumar, N., Walia, R.S., Angra, S.: Study of mechanical properties of pultruded jute-glass reinforced unsaturated polyester bio-composites with hybrid filler loading. World J. Eng. (2021). https://doi.org/10.1108/WJE-04-2020-0127

    Article  Google Scholar 

  46. Kretsis, G.: A review of the tensile, compressive, flexural and shear properties of hybrid fibre-reinforced plastics. Composites 18, 13–23 (1987). https://doi.org/10.1016/0010-4361(87)90003-6

    Article  Google Scholar 

Download references

Funding

There is no funding agency/source in the current study.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed in all aspects of the manuscript and have read and provide their consent to the manuscript version.

Corresponding author

Correspondence to Navin Kumar.

Ethics declarations

Conflicts of interest

All authors declare that there are no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Walia, R.S. & Angra, S. An interactive study on wear behaviour and mechanical properties of carbonized eggshells filler loaded glass-jute reinforced polyester hybrid bio-composites. Int J Interact Des Manuf 16, 913–925 (2022). https://doi.org/10.1007/s12008-022-00971-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-00971-5

Keywords

Navigation