Skip to main content
Log in

Effect of extruder temperature and printing speed on the tensile strength of fused deposition modeling (FDM) 3D printed samples: a meta-analysis study

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Fused filament fabrication that is also known as fused deposition modeling (FDM) is a widely used technology for fabricating 3-dimensional models. The properties of FDM 3D models are influenced by printing parameters. In this meta-analysis, the effect of printing speed or extruder temperature on the tensile strength of printed samples was investigated. The search strategy considering PubMed, Web of Science and Scopus databases was performed using suitable search terms. The eligible studies were found according to the PRISMA guidelines and relevant information regarding the effect size of printing parameters on the tensile strength of FDM printed samples were extracted. The effect size was calculated based on the Cohen's d as a standard mean difference (SMD) measure. The pooled effect size, heterogeneity analysis according to I2 statistics and Q-test and publication bias analysis using funnel plot as well as Egger's and Begg's tests were performed in STATA software (StataCorp, College Station, TX, USA). Twenty eligible studies were retrieved. Results showed the positive effect of extruder temperature rise on the tensile strength (SMD = 2.85, 95% CI [1.71, 3.98]), while a negative effect was observed for increasing printing speed (SMD = − 2.49, 95% CI [− 4.29, − 0.69]). Significant heterogeneity was observed between studies while the publication bias was negligible. This meta-analysis helped to enhance the statistical power for concluding the positive effect of extruder temperature and the negative effect of printing speed on the tensile strength of FDM printed samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABS:

Acrylonitrile butadiene styrene

PLA:

Polylactic acid

PPS:

Polyphenylene sulfide

FDM:

Fused deposition modeling

FFF:

Fused filament fabrication

SDM:

Standard mean difference

References

  1. Khalid, M., Peng, Q.: Investigation of printing parameters of additive manufacturing process for sustainability using design of experiments. In: Proceedings of the ASME Design Engineering Technical Conference (2020)

  2. Dawood, A., Marti Marti, B., Sauret-Jackson, V., Darwood, A.: 3D printing in dentistry. Br. Dent. J. 219, 521–529 (2015). https://doi.org/10.1038/sj.bdj.2015.914

    Article  Google Scholar 

  3. Lindemann, C., Jahnke, U., Moi, M., Koch, R.: Impact and influence factors of additive manufacturing on product lifecycle costs. In: Proceedings of the 24th Solid Freeform Fabrication Symposium, Sffsymposium Texas University Paderborn, Germany, pp. 998–1009 (2013)

  4. Espera, A.H., Dizon, J.R.C., Chen, Q., Advincula, R.C.: 3D-printing and advanced manufacturing for electronics. Prog. Addit. Manuf. 4, 245–267 (2019). https://doi.org/10.1007/s40964-019-00077-7

    Article  Google Scholar 

  5. Chae, M.P., Rozen, W.M., McMenamin, P.G., Findlay, M.W., Spychal, R.T., Hunter-Smith, D.J.: Emerging applications of bedside 3D printing in plastic surgery. Front. Surg. 2, 25 (2015). https://doi.org/10.3389/fsurg.2015.00025

    Article  Google Scholar 

  6. Amini, M., Reisinger, A., Pahr, D.H.: Influence of processing parameters on mechanical properties of a 3D-printed trabecular bone microstructure. J. Biomed. Mater. Res. B Appl. Biomater. 108, 38–47 (2020). https://doi.org/10.1002/jbm.b.34363

    Article  Google Scholar 

  7. Ahmed, S.W., Hussain, G., Altaf, K., Ali, S., Alkahtani, M., Abidi, M.H., Alzabidi, A.: On the effects of process parameters and optimization of interlaminate bond strength in 3D printed ABS/CF-PLA composite. Polymers (2020). https://doi.org/10.3390/polym12092155

    Article  Google Scholar 

  8. Asadi-Eydivand, M., Solati-Hashjin, M., Farzad, A., Abu Osman, N.A.: Effect of technical parameters on porous structure and strength of 3D printed calcium sulfate prototypes. Robot. Comput. Integr. Manuf. 37, 57–67 (2016). https://doi.org/10.1016/j.rcim.2015.06.005

    Article  Google Scholar 

  9. Akande, S.: Dimensional accuracy and surface finish optimization of fused deposition modelling parts using desirability function analysis. Int. J. Eng. Res. Tech. Res. (2015). https://doi.org/10.17577/IJERTV4IS040393

    Article  Google Scholar 

  10. Chacón, J.M., Caminero, M.A., García-Plaza, E., Núñez, P.J.: Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Mater. Des. 124, 143–157 (2017). https://doi.org/10.1016/j.matdes.2017.03.065

    Article  Google Scholar 

  11. Deng, X., Zeng, Z., Peng, B., Yan, S., Ke, W.: Mechanical properties optimization of poly-ether-ether-ketone via fused deposition modeling. Materials 11, 216 (2018). https://doi.org/10.3390/ma11020216

    Article  Google Scholar 

  12. Li, H., Wang, T., Sun, J., Yu, Z.: The effect of process parameters in fused deposition modelling on bonding degree and mechanical properties. Rapid. Prototyp. J. 24, 80–92 (2018). https://doi.org/10.1108/RPJ-06-2016-0090

    Article  Google Scholar 

  13. Christiyan, K.G.J., Chandrasekhar, U., Venkateswarlu, K., A study on the influence of process parameters on the Mechanical Properties of 3D printed ABS composite. In: IOP Conference Series: Materials Science and Engineering (2016)

  14. Sun, Q., Rizvi, G., Bellehumeur, C., Gu, P.: Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyp J. 14, 72–80 (2008). https://doi.org/10.1108/13552540810862028

    Article  Google Scholar 

  15. Wang, P., Zou, B., Ding, S., Li, L., Huang, C.: Effects of FDM-3D printing parameters on mechanical properties and microstructure of CF/PEEK and GF/PEEK. Chin. J. Aeronaut. (2020). https://doi.org/10.1016/j.cja.2020.05.040

    Article  Google Scholar 

  16. Ouhsti, M., El Haddadi, B., Belhouideg, S.: Effect of printing parameters on the mechanical properties of parts fabricated with open-source 3D printers in PLA by fused deposition modeling. Mech. Mech. Eng. 22, 895–907 (2018). https://doi.org/10.2478/mme-2018-0070

    Article  Google Scholar 

  17. Dou, H., Cheng, Y., Ye, W., Zhang, D., Li, J., Miao, Z., Rudykh, S.: Effect of process parameters on tensile mechanical properties of 3D printing continuous carbon fiber-reinforced PLA composites. Materials (2020). https://doi.org/10.3390/ma13173850

    Article  Google Scholar 

  18. Ning, F., Cong, W., Hu, Y., Wang, H.: Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: Effects of process parameters on tensile properties. J. Compos. Mater. 51, 451–462 (2016). https://doi.org/10.1177/0021998316646169

    Article  Google Scholar 

  19. Wang, P., Zou, B., Xiao, H., Ding, S., Huang, C.: Effects of printing parameters of fused deposition modeling on mechanical properties, surface quality, and microstructure of PEEK. J. Mater. Process. Technol. 271, 62–74 (2019). https://doi.org/10.1016/j.jmatprotec.2019.03.016

    Article  Google Scholar 

  20. Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G.: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097 (2009). https://doi.org/10.1371/journal.pmed.1000097

    Article  Google Scholar 

  21. Higgins, J., Thompson, S., Deeks, J., Altman, D.: Measuring inconsistency in meta-analyses. BMJ (Clin. Res. Ed.) 327, 557–560 (2003). https://doi.org/10.1136/bmj.327.7414.557

    Article  Google Scholar 

  22. van Enst, W.A., Ochodo, E., Scholten, R.J.P.M., Hooft, L., Leeflang, M.M.: Investigation of publication bias in meta-analyses of diagnostic test accuracy: a meta-epidemiological study. BMC Med. Res. Methodol. 14, 70 (2014). https://doi.org/10.1186/1471-2288-14-70

    Article  Google Scholar 

  23. Murugan, R., Mitilesh, R.N., Singamneni, S.: Influence of process parameters on the mechanical behaviour and processing time of 3D printing. Int. J. Mod. Manuf. Technol. 10, 69–75 (2018)

    Google Scholar 

  24. Abbott, A.C., Tandon, G.P., Bradford, R.L., Koerner, H., Baur, J.W.: Process parameter effects on bond strength in fused filament fabrication. In: International SAMPE Technical Conference (2016)

  25. Khunt, C.P., Makhesana, M.A., Mawandiya, B.K., Patel, K.M.: Investigations on the influence of printing parameters during processing of biocompatible polymer in Fused Deposition Modelling (FDM). Adv. Mater. Process Technol. (2021). https://doi.org/10.1080/2374068x.2021.1927651

    Article  Google Scholar 

  26. Akhoundi, B., Nabipour, M., Hajami, F., Shakoori, D.: An experimental study of nozzle temperature and heat treatment (annealing) effects on mechanical properties of high-temperature polylactic acid in fused deposition modeling. Polym. Eng. Sci. 60, 979–987 (2020). https://doi.org/10.1002/pen.25353

    Article  Google Scholar 

  27. Behzadnasab, M., Yousefi, A.A., Ebrahimibagha, D., Nasiri, F.: Effects of processing conditions on mechanical properties of PLA printed parts. Rapid Prototyp. J. 26, 381–389 (2020). https://doi.org/10.1108/rpj-02-2019-0048

    Article  Google Scholar 

  28. El Magri, A., El Mabrouk, K., Vaudreuil, S., Ebn Touhami, M.: Experimental investigation and optimization of printing parameters of 3D printed polyphenylene sulfide through response surface methodology. J. Appl. Polym. Sci. (2020). https://doi.org/10.1002/app.49625

    Article  Google Scholar 

  29. Godec, D., Cano, S., Holzer, C., Gonzalez-Gutierrez, J.: Optimization of the 3D printing parameters for tensile properties of specimens produced by fused filament fabrication of 17–4PH stainless steel. Materials (Basel) (2020). https://doi.org/10.3390/ma13030774

    Article  Google Scholar 

  30. Meram, A., Sözen, B.: Investigation on the manufacturing variants influential on the strength of 3D printed products. Res. Eng. Struct. Mater. 6, 293–313 (2020). https://doi.org/10.17515/resm2019.171me3112

    Article  Google Scholar 

  31. Mpofu, N.S., Mwasiagi, J.I., Nkiwane, L.C., Githinji, D.N.: The use of statistical techniques to study the machine parameters affecting the properties of 3D printed cotton/polylactic acid fabrics. J. Eng. Fibers Fabr. (2020). https://doi.org/10.1177/1558925020928531

    Article  Google Scholar 

  32. Huynh, L.P.T., Nguyen, H.A., Nguyen, H.Q., Phan, L.K.H., Tran, T.T.: Effect of process parameters on mechanical strength of fabricated parts using the fused deposition modelling method. J. Korean Soc. Precis Eng. 36, 705–712 (2019). https://doi.org/10.7736/KSPE.2019.36.8.705

    Article  Google Scholar 

  33. Trivedi, A., Gurrala, P.K.: To study the influence of temperature on strength during free form fabrication (FFF). In: Dikshit MK, Pathak VK, Srivastava AK (eds.) 1st International Conference on Advances in Mechanical Engineering and Nanotechnology (2019).

  34. Abbott, A.C., Tandon, G.P., Bradford, R.L., Koerner, H., Baur, J.W.: Process-structure-property effects on ABS bond strength in fused filament fabrication. Addit. Manuf. 19, 29–38 (2018). https://doi.org/10.1016/j.addma.2017.11.002

    Article  Google Scholar 

  35. Kim, J.W., Kim, H., Ko, J.: Effect of changing printing parameters on mechanical properties of printed PLA and Nylon 645. J. Adv. Mech. Des. Syst. Manuf. (2020). https://doi.org/10.1299/jamdsm.2020jamdsm0056

    Article  Google Scholar 

  36. Tao, Y., Li, P., Pan, L.: Improving tensile properties of polylactic acid parts by adjusting printing parameters of open source 3D printers. Medziagotyra 26, 83–87 (2020). https://doi.org/10.5755/j01.ms.26.1.20952

    Article  Google Scholar 

  37. Hikmat, M., Rostam, S., Ahmed, Y.M.: Investigation of tensile property-based Taguchi method of PLA parts fabricated by FDM 3D printing technology. Results in Eng. 11, 100264 (2021). https://doi.org/10.1016/j.rineng.2021.100264

    Article  Google Scholar 

  38. Tang, C., Liu, J., Yang, Y., Liu, Y., Jiang, S., Hao, W.: Effect of process parameters on mechanical properties of 3D printed PLA lattice structures. Composites Part C: Open Access. 3, 100076 (2020). https://doi.org/10.1016/j.jcomc.2020.100076

    Article  Google Scholar 

  39. Nguyen, V.H., Huynh, T.N., Nguyen, T.P., Tran, T.T.: Single and multi-objective optimisation of processing parameters for fused deposition modelling in 3D printing technology. Int. J. Autom. Mech. Eng. 17, 7542–7551 (2020). https://doi.org/10.15282/ijame.17.1.2020.03.0558

    Article  Google Scholar 

  40. Vambol, O., Kondratiev, A., Purhina, S., Shevtsova, M.: Determining the parameters for a 3D-printing process using the fused deposition modeling in order to manufacture an article with the required structural parameters. East.-Eur. J. Enterp. Technol. 2, 70–80 (2021). https://doi.org/10.15587/1729-4061.2021.227075

    Article  Google Scholar 

  41. Zakaria, H., Khan, S.F., Fee, M.F.C., Ibrahim, M.: Printing temperature, printing speed and raster angle variation effect in fused filament fabrication. In: IOP Conference Series: Materials Science and Engineering (2019).

  42. Florin, B., Daniel, V., Anton, H.: The influence of 3d printing parameters on elastic and mechanical characteristics of polylactide. Mater Sci. Forum, pp. 483–492 (2019)

  43. Ning, F., Cong, W., Jia, Z., Wang, F., Zhang, M.: Additive manufacturing of CFRP composites using fused deposition modeling: Effects of process parameters. In: ASME 2016 11th International Manufacturing Science and Engineering Conference, MSEC 2016 (2016)

  44. Yang, C., Tian, X., Li, D., Cao, Y., Zhao, F., Shi, C.: Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material. J. Mater. Process Technol. 248, 1–7 (2017). https://doi.org/10.1016/j.jmatprotec.2017.04.027

    Article  Google Scholar 

  45. Wang, S., Ma, Y., Deng, Z., Zhang, S., Cai, J.: Effects of fuseddeposition modeling process parameters on tensile, dynamic me-chanical properties of 3D printed polylactic acid materials. PolymTest. 86, 106483 (2020). https://doi.org/10.1016/j.polymertesting.2020.106483

    Article  Google Scholar 

  46. Sood, A.K., Ohdar, R.K., Mahapatra, S.S.: Parametric appraisal of fused deposition modeling process using the grey Taguchi method. Proc. IMechE. 224, 135–145 (2010)

    Article  Google Scholar 

  47. Tuan Rahim, T.N.A., Md Akil, H., Abdullah, A., Mohamad, D., Rajion, Z.: Optimization of the 3D printing parameters on dimensional accuracy and surface finishing for new polyamide 6 and its composite used in fused deposition modeling (FDM) process. J. Mech. Eng. (2017). https://doi.org/10.1177/0731684415594692

    Article  Google Scholar 

  48. Zhang, Y., Chou, K.: A parametric study of part distortions in fused deposition modelling using three-dimensional finite element analysis. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 222, 959–968 (2008). https://doi.org/10.1243/09544054JEM990

    Article  Google Scholar 

  49. Wang, T.-M., Xi, J.-T., Jin, Y.: A model research for prototype warp deformation in the FDM process. Int. J. Adv. Manuf. Syst. 33, 1087–1096 (2007). https://doi.org/10.1007/s00170-006-0556-9

    Article  Google Scholar 

  50. Coogan, T., Kazmer, D.: In-line rheological monitoring of fused deposition modeling. J. Rheol. 63, 141–155 (2019). https://doi.org/10.1122/1.5054648

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Vice-Chancellor for research and technology for all supports and Dr. A. Miresmaeili for comments and suggestions about this work.

Funding

This work was funded by Hamadan University of Medical Science, Hamadan, Iran (Grant No. 140006305305/ IR.UMSHA.REC.1399.953).

Author information

Authors and Affiliations

Authors

Contributions

S.F and F.V reviewed the literature, performed the analyses and wrote the manuscript.

Corresponding authors

Correspondence to Sajjad Farashi or Fariborz Vafaee.

Ethics declarations

Conflict of interest

There is nothing to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Search terms for retrieving eligible studies from different databases

Appendix: Search terms for retrieving eligible studies from different databases

1.1 Web of Sciences

TS=("3D printing" OR "3 dimensional printing" OR "Additive manufacturing") AND TS=("Nozzle temperature" OR "extruder temperature" OR "Printing speed" OR "printing parameters") AND TS=("tensile strength" OR "mechanical strength")

1.2 PubMed

(3D printing OR 3-dimensional printing OR additive manufacturing) AND (Nozzle temperature OR extruder temperature OR printing speed OR printing parameters) AND (tensile strength OR mechanical strength)

1.3 Scopus

(TITLE-ABS-KEY("3D printing") OR TITLE-ABS-KEY ("3-dimensional printing") OR TITLE-ABS-KEY("Additive manufacturing")) AND (TITLE-ABS-KEY("Nozzle temperature") OR TITLE-ABS-KEY("extruder temperature") OR TITLE-ABS-KEY("Printing speed") OR TITLE-ABS-KEY("printing parameters")) AND (TITLE-ABS-KEY("tensile strength") OR TITLE-ABS-KEY("mechanical strength"))

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farashi, S., Vafaee, F. Effect of extruder temperature and printing speed on the tensile strength of fused deposition modeling (FDM) 3D printed samples: a meta-analysis study. Int J Interact Des Manuf 16, 305–316 (2022). https://doi.org/10.1007/s12008-021-00827-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-021-00827-4

Keywords

Navigation