Skip to main content
Log in

Analysis of the manufacturing flexibility parameters with effective performance metrics: a new interactive approach based on modified TOPSIS-Taguchi method

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Flexibility is one of the most important strategy parameters to achieve a long-term successful performance for a manufacturing company. Studies in the literature aim to operate a manufacturing system at optimum levels of flexibility parameters under its own manufacturing environment. This study aims to present an interactive analysis framework based on TOPSIS and Taguchi parameter design principles for investigating the effects of different levels of flexibility parameters on the performance of a flexible manufacturing cell (FMC). The main performance metric used in this study is manufacturing lead time. Other important metrics to evaluate quality control and inspection policies are also investigated in this study. To conclude, a combined model of an interactive approach based on TOPSIS and Taguchi methods are used to assess the effectiveness of the flexibility parameters for a FMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cochran, D.S., Jafri, M.U., Chu, A.K., Bi, Z.: Incorporating design improvement with effective evaluation using the manufacturing system design decomposition (MSDD). J. Ind. Inf. Integr. 2, 65–74 (2016)

    Google Scholar 

  2. Knopp, S., Dauzère-Pérès, S., Yugma, C.: Flexible job-shop scheduling with extended route flexibility for semiconductor manufacturing. Proc. Winter Simul. Conf. 2, 478–2489 (2014)

    Google Scholar 

  3. Gonğcalves J.P.M.: Robot interface in a flexible manufacturing cell, Msc Thesis, Lehigh University, USA (1992)

  4. Cutkosky, M.R., Fussell, P.S., Milligan Jr, R.: Precision flexible machining cells within a manufacturing system (No. CMU-RI-TR-84–12). Carnegie-Mellon Univ. Pittsburgh Pa Robotics Inst (1984)

  5. Leitão, P.J., Martins, C., Rocha, R.: Integration of CNC machines in flexible manufacturing cell. Present. Day-Proc. ESPRIT 5629, 207–217 (1995)

    Google Scholar 

  6. Chan, F.T.: The effects of routing flexibility on a flexible manufacturing system. Int. J. Comput. Integr. Manuf. 14(5), 431–445 (2001)

    Article  Google Scholar 

  7. Lozano, S., Teba, J., Larrañeta, J., Onieva, L., de Toledo, P.A.: Dynamic part—routing in a flexible manufacturing system. Belgian J. Oper. Res. 34(4), 16–28 (1994)

    MATH  Google Scholar 

  8. Chandra, P., Tombak, M.M.: Models for the evaluation of routing and machine flexibility. Eur. J. Oper. Res. 60(2), 156–165 (1992)

    Article  Google Scholar 

  9. Özkirim, M., Durmuşoğlu, M.B.: Dışsal rota esnekliğine sahip hücresel üretim sistemlerinin benzetim analizi. İTÜ J (D) 6(2), 41–52 (2010). (In Turkish)

    Google Scholar 

  10. Wadhwa, R.S.: Flexibility in manufacturing automation: a living lab case study of Norwegian metal casting SMEs. J. Manuf. Syst. 31, 444–454 (2012)

    Article  Google Scholar 

  11. Galbraith, L., Greene, T.J.: Manufacturing system performance sensitivity to selection of product design metrics. J. Manuf. Syst. 14(2), 71–79 (1995)

    Article  Google Scholar 

  12. Sharma, P., Jain, A.: Effect of routing flexibility and sequencing rules on performance of stochastic flexible job shop manufacturing system with setup times: simulation approach. Proc. Instit. Mech. Eng. Part B J. Eng. Manuf. 231(2), 329–345 (2017)

    Article  Google Scholar 

  13. Pérez-Pérez, M., Bedia, A.-M.S., López-Fernández, M.-C., García-Piqueres, G.: Research opportunities on manufacturing flexibility domain: A review and theory-based research agenda. J. Manuf. Syst. 48, 9–20 (2018)

    Article  Google Scholar 

  14. Jain, A., Jain, P., Chan, F.T., Singh, S.: A review on manufacturing flexibility. Int. J. Prod. Res. 51(19), 5946–5970 (2013)

    Article  Google Scholar 

  15. Malhotra, M., Sharma, S.: Measurement equivalence using generalizability theory: an examination of manufacturing flexibility dimensions. Decis. Sci. 39(4), 643–669 (2008)

    Article  Google Scholar 

  16. Wahab, M., Wu, D., Lee, C.: A generic approach to measuring the machine flexibility of manufacturing systems. Eur. J. Oper. Res. 186(1), 137–149 (2008)

    Article  MathSciNet  Google Scholar 

  17. Stecke, K.E.: Design, planning, scheduling, and control problems of Flexible manufacturing systems. In: Proceeding of the First ORSA/TIMS Special Interest Conference on FMS, Ann Arbor, MI (1984)

  18. Taeho, P., Hochang, L., Heeseok, L.: FMS design model with multiple objectives using compromise programming. Int. J Prod. Res. 39(15), 3513–3528 (2001)

    Article  Google Scholar 

  19. Fischer, X., Fadel, G., Ledoux, Y.: Interactive product design. In: Fischer, X. (ed.) Research in Interactive Design, vol. 3. Springer, Paris (2011)

    Chapter  Google Scholar 

  20. Fiorini, L., Tabeau, K., D’Onofrio, G., et al.: Co-creation of an assistive robot for independent living: lessons learned on robot design. Int. J. Interact. Des. Manuf. (2019). https://doi.org/10.1007/s12008-019-00641-z

    Article  Google Scholar 

  21. Nilufer, T., Stephen, H.: Security of smart manufacturing systems. J. Manuf. Syst. 47, 93–106 (2018)

    Article  Google Scholar 

  22. Zignego, M.I., Gemelli, P.: A smart mockup for a small habitat. Int. J. Interact. Des. Manuf. (2019). https://doi.org/10.1007/s12008-019-00629-9

    Article  Google Scholar 

  23. Hernandez-de-Menendez, M., Escobar Díaz, C., Morales-Menendez, R.: Technologies for the future of learning: state of the art. Int. J. Interact. Des. Manuf. (2019). https://doi.org/10.1007/s12008-019-00640-0

    Article  Google Scholar 

  24. Zafrane, M.A., Bachir, A., Boudechiche, Z., et al.: Interactive design and advanced manufacturing of double solar panel deployment mechanism for CubeSat, part 1: electronics design. Int J Interact Des Manuf. 14, 503–518 (2020)

    Article  Google Scholar 

  25. Yurdakul, M., Balci, A., Ic, Y.T.: A knowledge-based material selection system for interactive pressure vessel design. Int J Interact Des Manuf. 14, 323–343 (2020)

    Article  Google Scholar 

  26. Fischer, X., Coutellier, D.: Editorial. Int. J. Interact. Des. Manuf. 1, 1–4 (2007)

    Article  Google Scholar 

  27. Ranjit, K.R.” A primer on the Taguchi method: Van Nostrand Reinhold (1990)

  28. Phadke, M.S.: Quality Engineering Using Robust Design. Prentice Hall, USA, New Jersey (1989)

    Google Scholar 

  29. Unal, R., Dean, E.B.: Taguchi approach to design optimization for quality and cost: an overview (1990)

  30. Su, T.-L., Chen, H.-W., Lu, C.-F.: Systematic Optimization for the evaluation of the microinjection molding parameters of light guide plate with TOPSIS-based Taguchi method. Adv. Polym. Tech. 29(1), 54–63 (2010)

    Article  Google Scholar 

  31. Hong, G.-B., Su, T.-L.: Statistical analysis of experimental parameters in characterization of ultraviolet-resistant polyester fiber using a TOPSIS-Taguchi method. Iran Polym. J. 21(12), 877–885 (2012)

    Article  Google Scholar 

  32. Lan, T.-S.: Taguchi optimization of multi objective CNC machining using TOPSIS. Inf. Technol. J. 8(6), 917–922 (2009)

    Article  Google Scholar 

  33. Liao, H.C.: Using PCR-TOPSIS to optimize Taguchi’s multi response problem. Int. J. Adv. Manuf. Tech. 22, 649–655 (2003)

    Article  Google Scholar 

  34. Lu, J.-C., Yang, T., Su, C.-T.: Analysing optimum push/pull junction point location using multiple criteria decision-making for multistage stochastic production system. Int. J. Prod. Res. 50(19), 5523–5537 (2012)

    Article  Google Scholar 

  35. Yang, T., Chou, P.: Solving a multi-response simulation-optimization problem with discrete variables using a multiple-attribute decision-making method. Math. Comput. Simulat. 68(1), 9–21 (2005)

    Article  MathSciNet  Google Scholar 

  36. İç, Y.T., Yıldırım, S.: MOORA-based Taguchi optimization for improving product or process quality. Int. J. Prod. Res. 51(11), 3321–3341 (2013)

    Article  Google Scholar 

  37. Şimşek, B., İç, Y.T., Şimşek, E.H.: A TOPSIS-based Taguchi optimization to determine optimal mixture proportions of the high strength self-compacting concrete. Chemom. Intell. Lab. Syst. 125, 18–32 (2013)

    Article  Google Scholar 

  38. Şimşek, B., İç, Y.T.: Multi-response simulation optimization approach for the performance optimization of an alarm monitoring center. Saf. Sci. 66, 61–74 (2014)

    Article  Google Scholar 

  39. Şimşek, B., İç, Y.T., Şimşek, E.H.: “Hybridizing a fuzzy multi-response Taguchi optimization algorithm with artificial neural networks to solve standard ready-mixed concrete optimization problems. Int. J. Comput. Intell. Syst. 9(3), 525–543 (2016)

    Article  Google Scholar 

  40. İç, Y.T., Elaldı, F., Keçeci, B.: Topsis based taguchi optimization of machining characteristics in end milling operation of kevlar-epoxy composites. J. Chin. Soc. Mech. Eng. 37(6), 653–662 (2016)

    Google Scholar 

  41. İç, Y.T., Saraloğlu Güler, E., Erbil, Ç.Z.: Reducing uncertainty in a type J thermocouple calibration process. Int. J. Thermophys. 40(53), 1–22 (2019)

    Google Scholar 

  42. Chavan, P., Patil, A.: Taguchi-based optimization of machining parameter in drilling spheroidal graphite using combined TOPSIS and AHP method. In: Venkata-Rao, R., Taler, J. (eds.) Advanced Engineering Optimization Through Intelligent Techniques Advances in Intelligent Systems and Computing, vol. 949. Springer, Singapore (2020)

    Google Scholar 

  43. Gopal, P.M., Prakash, K.S.: Minimization of cutting force, temperature and surface roughness through GRA TOPSIS and Taguchi techniques in end milling of Mg hybrid MMC. Measurement 116, 178–192 (2018)

    Article  Google Scholar 

  44. Nguyen, H.-P., Pham, V.-D., Ngo, N.-V.: Application of TOPSIS to Taguchi method for multi-characteristic optimization of electrical discharge machining with titanium powder mixed into dielectric fluid. Int. J. Adv. Manuf. Technol. 98, 1179–1198 (2018)

    Article  Google Scholar 

  45. Wang, S.T.: Integrating the Taguchi method and the multiattribute decision-making method to optimize the surface mount technology solder paste printing thickness process. Proc. Instit. Mech. Eng. Part B J. Eng. Manuf. 227(8), 1209–1217 (2013)

    Article  Google Scholar 

  46. Internet: http://seykoc.com.tr/. Date: 14.12.2019 (18:00)

  47. Internet: http://www.cadcamsektoru.com/makaleler/Talasli-Imalatta-Kullanilan-Kesici-TOOLlar-9949.htm; Date: 15.09. 2020 (14:30)

  48. Browne, J., Dubois, D., Rathmill, K., Sethi, S.P., Stecke, K.E.: Classification of flexible manufacturing systems. FMS Magaz. 114–117 (1984)

  49. Das, S.K.: The measurement of flexibility in manufacturing systems. Int. J. Flex. Manuf. Syst. 8, 67–93 (1996)

    Article  Google Scholar 

Download references

Funding

This research was supported by Baskent University, Ankara, Turkey, under the Contract No. BA/FM-15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Tansel İç.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Cutting tool information

In this study three different end mill cutters were used with respect to standard DIN 844/BN HSS-E Form B which are alloyed as 303/20, HSS-E 8 Co%.

  • d = 3 mm, 4-necked, y = 30° helix angle with finger HSS cutter 

  • d = 4 mm, 4-necked, y = 30° helix angle with finger HSS cutter 

  • d = 5 mm, 4-necked, y = 30° helix angle with finger HSS cutter 

See Fig. 

Fig. 6
figure 6

End mill HSS cutter

6.

Appendix B: Experimental set-up

The components are as follows:

  1. 1.

    Flexible manufacturing system control computer

  2. 2.

    CNC control computer (GE Fanuc Series 21)

  3. 3.

    Robot Arm (Festo RV-2AJ-SI3)

  4. 4.

    CNC vertical machining center (EMCO PC MiI 55)

  5. 5.

    Control station

  6. 6.

    Material handling conveyor (FESTO)

See Figs.

Fig. 7
figure 7

The experimental set-up

7 and

Fig. 8
figure 8

Mahr-Marsurf PS1

8.

Appendix C: Conducting to experiment

Various assumptions are made as follows in this study [5]:

  • The system is fully automated.

  • All machines are 100% reliable.

  • There is no scrap produced by machines.

  • Setup times of the machines are not included in the processing time.

  • Once the process starts in the machime, it is not allowed to cancel the operation.

  • The machine can handle only one part of the cycle.

  • Pallet capacity is three.

  • Pallets are not allowed to enter the processing area if the part is not ready.

  • All pallets are 100% reliable.

  • Operation ends when all the parts’ processes are completed.

See Fig. 

Fig. 9
figure 9

Performing of the experiments

9.

Appendix D: ANOVA tables

See Tables

Table 30 Two-way analysis of variance for MLT

30,

Table 31 4-parameter analysis of variance for MLT

31,

Table 32 Two way variance analysis for surface roughness

32 and

Table 33 4-parameters analysis of variance for surface roughness values

33.

Appendix E: Taguchi results via graphical illustrations

See Figs.

Fig. 10
figure 10

Taguchi results for MLT (S/N ratios)

10,

Fig. 11
figure 11

Taguchi results for MLT (means)

11,

Fig. 12
figure 12

Taguchi results for surface roughness (S/N ratios)

12 and

Fig. 13
figure 13

Taguchi results for surface roughness (means)

13.

Appendix F: Taguchi results via graphical illustrations (continue)

See Figs.

Fig. 14
figure 14

TOPSIS-Taguchi method’s result (S/N ratios)

14,

Fig. 15
figure 15

TOPSIS-Taguchi method’s result (means)

15,

Fig. 16
figure 16

Taguchi analysis result for scenario 2 (S/N ratios)

16,

Fig. 17
figure 17

Taguchi analysis result for scenario 2 (means)

17,

Fig. 18
figure 18

Taguchi analysis result for scenario 3

18 and

Fig. 19
figure 19

Taguchi analysis result for scenario 3

19.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

İç, Y.T., Şaşmaz, T., Yurdakul, M. et al. Analysis of the manufacturing flexibility parameters with effective performance metrics: a new interactive approach based on modified TOPSIS-Taguchi method. Int J Interact Des Manuf 16, 197–225 (2022). https://doi.org/10.1007/s12008-021-00799-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-021-00799-5

Keywords

Navigation