Skip to main content
Log in

Role of jet radius and jet location in cryogenic machining of Inconel 718: a finite element method based approach

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Cryogenic cooling is attributed as a green option to counter the high temperatures developed in machining process. The parameters specific to the cryogenic cooling such as jet radius and jet location have controlling influence on the machining performance. Inconel 718 is one of the most prominent aeronautic alloys, mainly used in the aerospace industry due to its high strength and ability to retain properties at very high temperatures. Inconel 718 is a hard to cut material due its low thermal conductivity and work hardening behavior. The present study that investigates the impact of cryogenic cooling using liquid nitrogen coolant on orthogonal turning of Inconel 718 for different values of jet radius, jet location and cutting speeds. The study incorporated a finite element model to simulate the different machining test conditions. The virtual assessment of cryogenic cutting process is beneficial for the decision making that how these parameters can contribute towards final decision making. The dissipation of heat at cutting edge and presence of jet of cryogenic coolant was simulated and analyzed for different jet radii, jet locations and cutting speeds. The study detected shear angle and evaluated chip compression ratio to understand the plastic deformation and related effects. The study revealed that cutting temperature decreased with increasing flow of LN2 at the cutting edge while the cutting force increased with high flow of coolant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Jayakrishna, K., Kar, V.R., Sultan, M.T.H., Rajesh, M.: Materials selection for aerospace components. In: Jawaid, M., Thariq, M., Saba, N. (eds.) Woodhead Publishing Series in Composites Science and Engineering, pp. 1–18. Woodhead Publishing, Sawston (2018)

  2. Parida, A.K., Maity, K.: Comparison the machinability of Inconel 718, Inconel 625 and Monel 400 in hot turning operation. Eng. Sci. Technol. Int. J. 21, 364–370 (2018). https://doi.org/10.1016/j.jestch.2018.03.018

    Article  Google Scholar 

  3. S. Rajaram GRRBNG, : Investigation of turning parameters of machining Inconel 718 using titanium and carbide inserts. Mater Today Proc. 5, 11283–11294 (2018)

    Article  Google Scholar 

  4. Xavior, M.A., Manohar, M., Jeyapandiarajan, P., Madhukar, P.M.: Tool wear assessment during machining of Inconel 718. Procedia Eng. 174, 1000–1008 (2017). https://doi.org/10.1016/j.proeng.2017.01.252

    Article  Google Scholar 

  5. Pandian, P.P., Rout, I.S.: Parametric investigation of machining parameters in determining the machinability of Inconel 718 using Taguchi technique and grey relational analysis. Procedia Comput. Sci. 133, 786–792 (2018). https://doi.org/10.1016/j.procs.2018.07.118

    Article  Google Scholar 

  6. Wang, Z.Y., Rajurkar, K.P., Fan, J., et al.: Hybrid machining of Inconel 718. Int. J. Mach. Tools Manuf. 43, 1391–1396 (2003). https://doi.org/10.1016/S0890-6955(03)00134-2

    Article  Google Scholar 

  7. Pereira, O., Urbikain, G., Rodríguez, A., et al.: Internal cryolubrication approach for Inconel 718 milling. Procedia Manuf. 13, 89–93 (2017). https://doi.org/10.1016/j.promfg.2017.09.013

    Article  Google Scholar 

  8. Iturbe, A., Hormaetxe, E., Garay, A., Arrazola, P.J.: surface integrity analysis when machining Inconel 718 with conventional and cryogenic cooling. Procedia CIRP 45, 67–70 (2016). https://doi.org/10.1016/j.procir.2016.02.095

    Article  Google Scholar 

  9. Nasr, M.N.A., Outeiro, J.C.: Sensitivity analysis of cryogenic cooling on machining of magnesium alloy AZ31B-O. Procedia CIRP 31, 264–269 (2015). https://doi.org/10.1016/j.procir.2015.03.030

    Article  Google Scholar 

  10. D’Addona, D.M., Raykar, S.J., Narke, M.M.: High speed machining of Inconel 718: tool wear and surface roughness analysis. Procedia CIRP 62, 269–274 (2017). https://doi.org/10.1016/j.procir.2017.03.004

    Article  Google Scholar 

  11. Musfirah, A.H., Ghani, J.A., Haron, C.H.C.: Tool wear and surface integrity of Inconel 718 in dry and cryogenic coolant at high cutting speed. Wear 376–377, 125–133 (2017). https://doi.org/10.1016/j.wear.2017.01.031

    Article  Google Scholar 

  12. Imbrogno, S., Sartori, S., Bordin, A., et al.: Machining simulation of Ti6Al4V under dry and cryogenic conditions. Procedia CIRP 58, 475–480 (2017). https://doi.org/10.1016/j.procir.2017.03.263

    Article  Google Scholar 

  13. Rotella, G., Umbrello, D.: Finite element modeling of microstructural changes in dry and cryogenic cutting of Ti6Al4V alloy. CIRP Ann. Manuf. Technol. 63, 69–72 (2014). https://doi.org/10.1016/j.cirp.2014.03.074

    Article  Google Scholar 

  14. Kheireddine, A.H., Ammouri, A.H., Lu, T., et al.: An FEM analysis with experimental validation to study the hardness of in-process cryogenically cooled drilled holes in Mg AZ31b. Procedia CIRP 8, 588–593 (2013). https://doi.org/10.1016/j.procir.2013.06.156

    Article  Google Scholar 

  15. Sun, Y., Huang, B., Puleo, D.A., Jawahir, I.S.: Enhanced machinability of Ti-5553 alloy from cryogenic machining: comparison with MQL and flood-cooled machining and modeling. Procedia CIRP 31, 477–482 (2015). https://doi.org/10.1016/j.procir.2015.03.099

    Article  Google Scholar 

  16. Pusavec, F., Lu, T., Courbon, C., et al.: Analysis of the influence of nitrogen phase and surface heat transfer coefficient on cryogenic machining performance. J. Mater. Process. Technol. 233, 19–28 (2016). https://doi.org/10.1016/j.jmatprotec.2016.02.003

    Article  Google Scholar 

  17. Lequien, P., Poulachon, G., Outeiro, J.C., Rech, J.: Hybrid experimental/modelling methodology for identifying the convective heat transfer coefficient in cryogenic assisted machining. Appl. Therm. Eng. 128, 500–507 (2018). https://doi.org/10.1016/j.applthermaleng.2017.09.054

    Article  Google Scholar 

  18. Davoudinejad, A., Chiappini, E., Tirelli, S., et al.: Finite element simulation and validation of chip formation and cutting forces in dry and cryogenic cutting of Ti–6Al–4V. Procedia Manuf. 1, 728–739 (2015). https://doi.org/10.1016/j.promfg.2015.09.037

    Article  Google Scholar 

  19. Piispanen, V.: Theory of formation of metal chips. J. Appl. Phys. 19, 876–881 (1948). https://doi.org/10.1063/1.1697893

    Article  Google Scholar 

  20. Merchant, M.E.: Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. J. Appl. Phys. 16, 267–275 (1945). https://doi.org/10.1063/1.1707586

    Article  Google Scholar 

  21. Astakhov, V.P., Shvets, S.: The assessment of plastic deformation in metal cutting. J. Mater. Process. Technol. 146, 193–202 (2004). https://doi.org/10.1016/j.jmatprotec.2003.10.015

    Article  Google Scholar 

  22. Man, X., Ren, D., Usui, S., et al.: Validation of finite element cutting force prediction for end milling. Procedia CIRP 1, 663–668 (2012). https://doi.org/10.1016/j.procir.2012.04.119

    Article  Google Scholar 

  23. Jafarian, F., Imaz Ciaran, M., Umbrello, D., et al.: Finite element simulation of machining Inconel 718 alloy including microstructure changes. Int. J. Mech. Sci. 88, 110–121 (2014). https://doi.org/10.1016/j.ijmecsci.2014.08.007

    Article  Google Scholar 

  24. Lee, W.-S., Lin, C.-F., Chen, T.-H., Chen, H.-W.: Dynamic impact response of Inconel 718 alloy under low and high temperatures. Mater. Trans. 52, 1734–1740 (2011). https://doi.org/10.2320/matertrans.M2011130

    Article  Google Scholar 

  25. ThirdWaveSystems: Third Wave AdvantEdgeTM User’s Manual Version 7.3 (2017)

  26. Banerjee, N., Sharma, A.: Identification of a friction model for minimum quantity lubrication machining. J. Clean. Prod. 83, 437–443 (2014). https://doi.org/10.1016/j.jclepro.2014.07.034

    Article  Google Scholar 

  27. Uhlmann, E., Henze, S., Brömmelhoff, K., Reimers, W.: Cutting simulation with consideration of the material hardening in the shear zone of AISI1045. Procedia CIRP 58, 91–96 (2017). https://doi.org/10.1016/j.procir.2017.03.199

    Article  Google Scholar 

  28. Lotfi, M., Amini, S.: Effect of ultrasonic vibration on frictional behavior of tool–chip interface: Finite element analysis and experimental study. Proc. Inst. Mech. Eng. B J. Eng. Manuf. (2016). https://doi.org/10.1177/0954405416666895

    Article  Google Scholar 

  29. Raof, N.A., Ghani, J.A., Syarif, J., et al.: Comparison of dry and cryogenic machining on chip formation and coefficient of friction in turning AISI 4340 alloy steel. Appl. Mech. Mater. 554, 7–11 (2014). https://doi.org/10.4028/www.scientific.net/AMM.554.7

    Article  Google Scholar 

  30. Dilip Jerold, B., Pradeep Kumar, M.: Experimental investigation of turning AISI 1045 steel using cryogenic carbon dioxide as the cutting fluid. J Manuf. Process. 13, 113–119 (2011). https://doi.org/10.1016/j.jmapro.2011.02.001

    Article  Google Scholar 

  31. Thamizhmanii, S., Sulaiman, H.: Machinability study using chip thickness ratio on difficult to cut metals by CBN cutting tool. Key Eng. Mater. 504–506, 1317–1322 (2012). https://doi.org/10.4028/www.scientific.net/KEM.504-506.1317

    Article  Google Scholar 

  32. Yao, C., Zhou, Z., Jiyin Zhang, D., LT, : Experimental study on cutting force of face-turning Inconel 718 with ceramic tools and carbide tools. Adv. Mech. Eng. 9, 1–9 (2017)

    Google Scholar 

  33. Hribersek, M., Pusavec, F., Rech, J., Kopac, J.: Modeling of machined surface characteristics in cryogenic orthogonal turning of Inconel 718. Mach. Sci. Technol. 22, 829–850 (2018). https://doi.org/10.1080/10910344.2017.1415935

    Article  Google Scholar 

  34. de Paula Oliveira, G., Fonseca, M.C., Araujo, A.C.: Residual stresses and cutting forces in cryogenic milling of Inconel 718. Procedia CIRP 77, 211–214 (2018). https://doi.org/10.1016/J.PROCIR.2018.08.289

    Article  Google Scholar 

  35. Wang, Z.Y., Rajurkar, K.P.: Cryogenic machining of hard-to-cut materials. Wear 239, 168–175 (2000). https://doi.org/10.1016/S0043-1648(99)00361-0

    Article  Google Scholar 

  36. Bhattacharyya, D., M.N. Allen SJM, : Cryogenic machining of Kevlar composites. Mater. Manuf. Process 8, 631–651 (1993). https://doi.org/10.1016/B978-0-85709-030-0.50014-X

    Article  Google Scholar 

  37. Yildiz, Y., Nalbant, M.: A review of cryogenic cooling in machining processes. Int. J. Mach. Tools Manuf. 48, 947–964 (2008). https://doi.org/10.1016/j.ijmachtools.2008.01.008

    Article  Google Scholar 

  38. Hong, S.Y., Ding, Y., Jeong, W.C.: Friction and cutting forces in cryogenic machining of Ti–6Al–4V. Int. J. Mach. Tools Manuf. 41, 2271–2285 (2001). https://doi.org/10.1016/S0890-6955(01)00029-3

    Article  Google Scholar 

  39. Boothroyd, G., Knight, W.A.: Fundamentals of Machining and Machine Tools, 2nd edn. Marcel Dekker, New York (1989)

    Google Scholar 

  40. Kalpakjian, S., Schmid, S.R.: Manufacturing Engineering and Technology, 6th edn. Prentice hall, Singapore (2010)

    Google Scholar 

  41. Liu, W., Ren, D., Usui, S., Marusich, T.D.: A gear cutting predictive model using the finite element method. In: 14th CIRP Conference on Modeling of Machining Operations, CIRP Procedia, vol 8, pp. 51–56 (2013)

Download references

Acknowledgements

Authors sincerely acknowledge the financial support provided by Dubai Silicon Oasis Authority (DSOA) and Rochester Institute of Technology - Dubai (RIT-D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salman Pervaiz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nouzil, I., Pervaiz, S. & Kannan, S. Role of jet radius and jet location in cryogenic machining of Inconel 718: a finite element method based approach. Int J Interact Des Manuf 15, 1–19 (2021). https://doi.org/10.1007/s12008-020-00703-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-020-00703-7

Keywords

Navigation