Skip to main content
Log in

Fatigue crack growth of new FML composites for light ship buildings under predominant mode II loading condition

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

The use of light but strong materials is largely studied in various area of the shipbuilding, this because the need of reducing the weight, and especially the weight of all the structures above the main deck assume primary importance for the stability. Traditionally in fast boats like fast ferries, hydrofoils, patrol boats, the typical materials are Aluminum alloy or composites, both those materials have advantages and disadvantages, but the new development of technologies made possible to combine them, in order to have a new material, combining the advantages of both, in terms of fatigue resistance, firefighting characteristics. In this paper, predominant mode II fatigue delamination tests of fiber metal laminates made of alternating layers of 2024-T3 aluminum alloy sheets and unidirectional E-Glass/epoxy laminates are presented. Several experimental tests are carried out employing the End Notched Flexure fixture and a progressive damage model is used to simulate the damage accumulation in the aluminum-composite interface, in the localized area in front of the crack tip, where micro-cracking or void formation reduce the delamination strength during fatigue tests. In particular, the numerical model is based on the cohesive zone approach and on the analytical definition of a damage parameter, directly related to the fatigue crack growth rate da/dN. The numerical model, implemented in ANSYS environment, uses a fracture mechanics-based criterion in order to determine the damage propagation. In particular, the study has allowed to determine the damage model constants that are used for numerical verification of the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Giallanza, A., Cannizzaro, L., Porretto, M., Marannano, G.: Design of the stabilization control system of a high-speed craft. Lecture Notes in Mechanical Engineering, 575–584 (2017)

  2. Cannizzaro, L., Giallanza, A., Marannano, G., Muraca, E., Palladino, M.: Dual compensation control-system for offshore logistic equipment. In: 17th International Conference on Ship and Shipping Research—NAV 2012, Naples (Italy), 2012

  3. Giallanza, A., Marannano, G., Pasta, A.: Structural optimization of innovative rudder for HSC. In: 17th International Conference on Ship and Shipping Research—NAV 2012, Naples (Italy), 2012

  4. Fragapane, S., Giallanza, A., Cannizzaro, L., Pasta, A., Marannano, G.: Experimental and numerical analysis of aluminum-aluminum bolted joints subject to an indentation process. Int. J. Fatigue 80(6), 332–340 (2015)

    Article  Google Scholar 

  5. Marannano, G., Pasta, A., Parrinello, F., Giallanza, A.: Effect of the indentation process on fatigue life of drilled specimens. J. Mech. Sci. Technol. 29(7), 2847–2856 (2015)

    Article  Google Scholar 

  6. Marannano, G., Parrinello, F., Giallanza, A.: Effects of the indentation process on fatigue life of drilled specimens: optimization of the distance between adjacent holes. J. Mech. Sci. Technol. 30(3), 1119–1127 (2016)

    Article  Google Scholar 

  7. Marannano, G.V., Pasta, A.: An analysis of interface delamination mechanisms in orthotropic and hybrid fiber-metal composite laminates. Eng. Fract. Mech. 74(4), 612–626 (2007)

    Article  Google Scholar 

  8. Marannano, G.V., Mistretta, L., Cirello, A., Pasta, S.: Crack growth analysis at adhesive-adherent interface in bonded joints under mixed mode I/II. Eng. Fract. Mech. 75(18), 5122–5133 (2008)

    Article  Google Scholar 

  9. Dugdale, D.S.: Yelding of steel sheets containing slits. J. Mech. Phys. Solids 8(2), 100–104 (1960)

    Article  Google Scholar 

  10. Barenblatt, G.I.: The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129 (1962)

    Article  MathSciNet  Google Scholar 

  11. Alfano, G., Crisfield, M.A.: Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int. J. Numer. Methods Eng. 50(7), 1701–1736 (2001)

    Article  Google Scholar 

  12. Needleman, A.: An analysis of tensile decohesion along an interface. J. Mech. Phys. Solids 38, 289–324 (1990)

    Article  Google Scholar 

  13. Schapery, R.A.: A theory of crack initiation and growth in viscoelastic media. Int. J. Fract. 11(4), 549–562 (1975)

    Article  Google Scholar 

  14. Tvergaard, V.: Effect of fiber debonding in a whisker-reinforced metal. Mater. Sci. Eng. 125, 203–213 (1990)

    Article  Google Scholar 

  15. Costanzo, F., Allen, D.H.: A continuum thermodynamic analysis of cohesive zone models. Int. J. Eng. Sci. 33(15), 2197–2219 (1995)

    Article  MathSciNet  Google Scholar 

  16. Allen, D.H., Searcy, C.R.: Numerical aspects of a micromechanical model of a cohesive zone. J. Reinf. Plast. Compos. 19(3), 240–248 (2000)

    Article  Google Scholar 

  17. Maiti, S., Geubelle, P.H.: A cohesive model for fatigue failure of polymers. Eng. Fract. Mech. 72, 691–708 (2005)

    Article  Google Scholar 

  18. Turon, A., Camanho, P.P., Costa, J., Dávila, C.G.: A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech. Mater. 38, 1072–1089 (2006)

    Article  Google Scholar 

  19. Turon, A., Dávila, C.G., Camanho, P.P., Costa, J.: An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng. Fract. Mech. 74(10), 1665–1682 (2007)

    Article  Google Scholar 

  20. Turon, A., Costa, J., Camanho, P.P., Dávila, C.G.: Simulation of delamination in composites under high-cycle fatigue. Compos. A Appl. Sci. Manuf. 38, 2270–2282 (2007)

    Article  Google Scholar 

  21. Turon, A., Camanho, P.P., Costa, J., Renart, J.: Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: definition of interlaminar strengths and elastic stiffness. Compos. Struct. 92, 1857–1864 (2010)

    Article  Google Scholar 

  22. Wang, B., Siegmund, T.: A numerical analysis of constraint effects in fatigue crack growth by use of an irreversible cohesive zone model. Int. J. Fract. 132(2), 175–196 (2005)

    Article  Google Scholar 

  23. Roth, S., Hütter, G., Kuna, M.: Simulation of fatigue crack growth with a cyclic cohesive zone model. Int. J. Fract. 188(1), 23–45 (2014)

    Article  Google Scholar 

  24. Jimenez, S., Liu, X., Duddu, R., Waisman, H.: A discrete damage zone model for mixed-mode delamination of composites under high-cycle fatigue. Int. J. Fract. 190(1–2), 53–74 (2014)

    Article  Google Scholar 

  25. Moroni, F., Pirondi, A.: A procedure for the simulation of fatigue crack growth in adhesively bonded joints based on the cohesive zone model and different mixed-mode propagation criteria. Eng. Fract. Mech. 78, 1808–1816 (2011)

    Article  Google Scholar 

  26. De Moura, M.F.S.F., Gonçalves, J.P.M.: Cohesive zone model for high-cycle fatigue of composite bonded joints under mixed-mode I + II loading. Eng. Fract. Mech. 140, 31–42 (2015)

    Article  Google Scholar 

  27. De Moura, M.F.S.F., Gonçalves, J.P.M.: Development of a cohesive zone model for fatigue/fracture characterization of composite bonded joints under mode II loading. Int. J. Adhes. Adhes. 54, 224–230 (2014)

    Article  Google Scholar 

  28. Parrinello, F., Marannano, G., Borino, G., Pasta, A.: Frictional effect in mode II delamination: experimental test and numerical simulation. Eng. Fract. Mech. 110, 258–269 (2013)

    Article  Google Scholar 

  29. Parrinello, F., Marannano, G., Borino, G.: A thermodynamically consistent cohesive-frictional interface model for mixed mode delamination. Eng. Fract. Mech. 153, 61–79 (2016)

    Article  Google Scholar 

  30. Parrinello, F., Borino, G.: Integration of finite displacement interface element in reference and current configurations. Meccanica 53(6), 1455–1468 (2018)

    Article  MathSciNet  Google Scholar 

  31. Parrinello, F.: Analytical solution of the 4ENF test with interlaminar frictional effects and evaluation of Mode II delamination toughness. J. Eng. Mech. 144(4), 04018011 (2018)

    Article  Google Scholar 

  32. Kießling, R., Ihlemann, J., Pohl, M., Stommel, M., Dammann, C., Mahnken, R., Bobbert, M., Meschut, G., Hirsch, F., Kästner, M.: On the design, characterization and simulation of hybrid metal-composite interfaces. Appl. Compos. Mater. (2016). https://doi.org/10.1007/s10443-016-9526-z

    Article  Google Scholar 

  33. Neto, J.A.B.P., Campilho, R.D.S.G., da Silva, L.F.M.: Parametric study of adhesive joints with composites. Int. J. Adhes. Adhes. 37, 96–101 (2012)

    Article  Google Scholar 

  34. Baron Saiz, C., Ingrassia, T., Nigrelli, V., Ricotta, V.: Thermal stress analysis of different full and ventilated disc brakes. Frattura ed Integrità Strutturale 9(34), 608–621 (2015)

    Google Scholar 

  35. Ingrassia, T., Lombardo, B., Nigrelli, V., Ricotta, V., Nalbone, L., D’Arienzo, A., D’Arienzo, M., Porcellini, G.: Influence of sutures configuration on the strength of tendon-patch joints for rotator cuff tears treatment. Injury (2019)

  36. Ingrassia, T., Nalbone, L., Nigrelli, V., Pisciotta, D., Ricotta, V.: Influence of the metaphysis positioning in a new reverse shoulder prosthesis. Lecture Notes in Mechanical Engineering, 469–478 (2017)

  37. Krueger, R.: Virtual crack closure technique: history, approach and applications. Appl. Mech. Rev. 57(2), 109–143 (2004)

    Article  Google Scholar 

  38. Marannano, G., Pasta, A., Giallanza, A.: A model for predicting the mixed-mode fatigue crack growth in a bonded joint. Fatigue Fract. Eng. Mater. Struct. 37(4), 380–390 (2014)

    Article  Google Scholar 

  39. Wahab, M.A.: Mechanics of Adhesives in Composite and Metal Joints. DEStech Publications Inc, USA (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Giallanza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The coordinates of the point N of Fig. 8 are determined by the intersection of the line \( \overline{AB} \) (see Eq. 13) with the line \( \overline{OD} \) (see Eq. 14), that can be represented as a function of damage variable DN.

$$ \frac{{y - \tau_{0} }}{{0 - \tau_{0} }} = \frac{{x - \delta_{0} }}{{\delta_{\hbox{max} } - \delta_{0} }}\,\,\, \Rightarrow \,\,\,y = \tau_{0} \left( {1 - \frac{{x - \delta_{0} }}{{\delta_{\hbox{max} } - \delta_{0} }}} \right) $$
(13)
$$ y = k_{0} \left( {1 - D_{N} } \right)x = \frac{{\tau_{0} }}{{\delta_{0} }}\left( {1 - D_{N} } \right)x $$
(14)

Substituting Eq. 13 into Eq. 14 and solving for x:

$$ \frac{{\tau_{0} }}{{\delta_{0} }}\left( {1 - D_{N} } \right)x = \tau_{0} \left( {1 - \frac{{x - \delta_{0} }}{{\delta_{\hbox{max} } - \delta_{0} }}} \right)\,\, \Rightarrow \,\,x = \frac{{\delta_{0} \cdot \delta_{\hbox{max} } }}{{\left( {1 - D_{N} } \right)\left( {\delta_{\hbox{max} } - \delta_{0} } \right) + \delta_{0} }} $$
(15)

In particular, for \( D_{N} = 0\,\,\,\, \Rightarrow \,\,\,x = \delta_{0} \, \); When \( D_{N} = 1\,\,\,\, \Rightarrow \,\,\,x = \delta_{\hbox{max} } \, \).

From Eq. 13, it is possible to obtain:

$$ y = \frac{{\tau_{0} \cdot \delta_{\hbox{max} } \left( {1 - D_{N} } \right)}}{{(1 - D_{N} )(\delta_{\hbox{max} } - \delta_{0} ) + \delta_{0} }} $$
(16)

In particular, for \( D_{N} = 0\,\,\,\, \Rightarrow \,\,\,y = \tau_{0} \, \); When \( D_{N} = 1\,\,\,\, \Rightarrow \,\,\,y = 0\, \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giallanza, A., Parrinello, F., Ruggiero, V. et al. Fatigue crack growth of new FML composites for light ship buildings under predominant mode II loading condition. Int J Interact Des Manuf 14, 77–87 (2020). https://doi.org/10.1007/s12008-019-00617-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-019-00617-z

Keywords

Navigation