Skip to main content
Log in

Homogenization driven design of lightweight structures for additive manufacturing

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

The diffusion of design tools suitable for regular lattice structures was recently stimulated by the spread of additive manufacturing technologies that enable the fabrication of complex geometries, exceeding the limits of traditional manufacturing methods. Fillet radii play a fundamental role in the design of lattice materials, reducing the stress concentration and improving fatigue life. However, only simplified beam and 2D models are available in the literature, which are unable to capture the actual stiffness and stress concentrations in the cell nodes of the 3-D beam based lattice structures with fillets. In this paper, four types of polyamide 12 cells, fabricated by selective laser sintering technology, based on cylindrical elements, are studied by finite element (FE) analysis, evaluating the influence of struts and fillet radii on the mechanical properties. In order to study a single cell, specific boundary conditions, simulating the presence of adjacent cells, were adopted in FE analysis. As a result, a model describing mechanical properties as a function of geometrical characteristics is obtained. By this model, it is possible to replace the complex shape of a lattice structure with its boundary, simplifying numerical analyses. This approach, called homogenization, is very useful in the design process of lightweight structures and can be adopted in optimization strategies. Numerical outcomes show that the effect of fillet radius is not negligible, especially in cells having a large number of struts. Moreover, experimental tests were also carried out showing a good agreement with the numerical analysis. Finally, an interactive design process for lattice structures based on experimental and numerical outcomes is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

E :

Young modulus

G :

Shear modulus

ν :

Poisson’s ratio

R :

Beam radius

r :

Fillet radius

L :

Cell dimension

:

Displacement

σ :

Tensile stress

ε :

Tensile strain

τ :

Shear stress

γ :

Shear strain

F :

Force

ρ :

Relative density or volume fraction

V :

Actual cell volume

V 0 :

Volume occupied by the cell

E 0, G 0, ν 0, σ 0 :

Mechanical properties of the bulk material

E ef, G ef, ν ef, σ ef, τ ef :

Effective mechanical properties of the virtual material of a cell

R 2 :

Coefficient of determination

BCC :

Body-centered cubic

BCCZ :

Body-centered cubic with vertical pillars

SC :

Simple cubic

RBCC :

Reinforced body-centered cubic

GA :

Modified Gibson–Ashby

OT :

Octet-truss

FE :

Finite element

AM :

Additive manufacturing

PA 12 :

Polyamide 12

SLM :

Selective laser melting

SLS :

Selective laser sintering

References

  1. Gibson, L.J., Ashby, M.F.: Cellular Solid. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  2. Rashed, M.G., Ashraf, M., Mines, R.A.W., Hazell, P.J.: Metallic microlattice materials: a current state of the art on manufacturing, mechanical properties and applications. Mater. Des. 95, 518–533 (2016). https://doi.org/10.1016/j.matdes.2016.01.146

    Article  Google Scholar 

  3. Sun, W., Starly, B., Nam, J., Darling, A.: Bio-CAD modeling and its applications in computer-aided tissue engineering. Comput. Des. 37, 1097–1114 (2005). https://doi.org/10.1016/j.cad.2005.02.002

    Google Scholar 

  4. Tao, W., Leu, M.C.: Design of lattice structures for additive manufacturing. In: 2016 International Symposium Flexible Automation, pp. 1–3 (2016)

  5. Tamburrino, F., Graziosi, S., Bordegoni, M.: The design process of additively manufactured mesoscale lattice structures: a review. J. Comput. Inf. Sci. Eng. 18, 1–16 (2018). https://doi.org/10.1115/1.4040131

    Article  Google Scholar 

  6. Savio, G., Rosso, S., Meneghello, R., Concheri, G.: Geometric modeling of cellular materials for additive manufacturing in biomedical field: a review. Appl. Bionics Biomech. 2018, 1–14 (2018). https://doi.org/10.1155/2018/1654782

    Article  Google Scholar 

  7. Ceruti, A., Ferrari, R., Liverani, A.: Design for additive manufacturing using LSWM: a CAD tool for the modelling of lightweight and lattice structures. In: Campana, G., Howlett, R.J., Setchi, R., Cimatti, B. (eds.) Sustainable Design and Manufacturing 2017. Smart Innovation, Systems and Technologies, pp. 756–765. Springer, Cham (2017)

    Chapter  Google Scholar 

  8. Zeinalabedini, H., Yildiz, Y.O., Zhang, P., Laux, K., Kirca, M., To, A.C.: Homogenization of additive manufactured polymeric foams with spherical cells. Addit. Manuf. 12, 274–281 (2016). https://doi.org/10.1016/j.addma.2016.04.008

    Article  Google Scholar 

  9. Freund, J., Karakoç, A., Sjölund, J.: Computational homogenization of regular cellular material according to classical elasticity. Mech. Mater. 78, 56–65 (2014). https://doi.org/10.1016/j.mechmat.2014.07.018

    Article  Google Scholar 

  10. Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mech. Mater. 46, 57–68 (2012). https://doi.org/10.1016/j.mechmat.2011.11.009

    Article  Google Scholar 

  11. Vigliotti, A., Pasini, D.: Stiffness and strength of tridimensional periodic lattices. Comput. Methods Appl. Mech. Eng. 229–232, 27–43 (2012). https://doi.org/10.1016/j.cma.2012.03.018

    Article  Google Scholar 

  12. Concli, F., Gilioli, A.: Numerical and experimental assessment of the static behavior of 3D printed reticular Al structures produced by selective laser melting: progressive damage and failure. Proc. Struct. Integr. 12, 204–212 (2018). https://doi.org/10.1016/j.prostr.2018.11.094

    Article  Google Scholar 

  13. Arabnejad, S., Pasini, D.: Mechanical properties of lattice materials via asymptotic homogenization and comparison with alternative homogenization methods. Int. J. Mech. Sci. 77, 249–262 (2013). https://doi.org/10.1016/j.ijmecsci.2013.10.003

    Article  Google Scholar 

  14. Xu, S., Shen, J., Zhou, S., Huang, X., Xie, Y.M.: Design of lattice structures with controlled anisotropy. Mater. Des. 93, 443–447 (2016). https://doi.org/10.1016/j.matdes.2016.01.007

    Article  Google Scholar 

  15. Moongkhamklang, P., Deshpande, V.S., Wadley, H.N.G.: The compressive and shear response of titanium matrix composite lattice structures. Acta Mater. 58, 2822–2835 (2010). https://doi.org/10.1016/j.actamat.2010.01.004

    Article  Google Scholar 

  16. Zupan, M., Deshpande, V.S., Fleck, N.A.: The out-of-plane compressive behaviour of woven-core sandwich plates. Eur. J. Mech. A/Solids 23, 411–421 (2004). https://doi.org/10.1016/j.euromechsol.2004.01.007

    Article  MATH  Google Scholar 

  17. Côté, F., Deshpande, V.S., Fleck, N.A., Evans, A.G.: The compressive and shear responses of corrugated and diamond lattice materials. Int. J. Solids Struct. 43, 6220–6242 (2006). https://doi.org/10.1016/j.ijsolstr.2005.07.045

    Article  MATH  Google Scholar 

  18. Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. J. Mech. Phys. Solids 49, 1747–1769 (2001). https://doi.org/10.1016/S0022-5096(01)00010-2

    Article  MATH  Google Scholar 

  19. Smith, M., Guan, Z., Cantwell, W.J.: Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique. Int. J. Mech. Sci. 67, 28–41 (2013). https://doi.org/10.1016/j.ijmecsci.2012.12.004

    Article  Google Scholar 

  20. Tsopanos, S., Mines, R.A.W., McKown, S., Shen, Y., Cantwell, W.J., Brooks, W., Sutcliffe, C.J.: The influence of processing parameters on the mechanical properties of selectively laser melted stainless steel microlattice structures. J. Manuf. Sci. Eng. 132, 41011 (2010). https://doi.org/10.1115/1.4001743

    Article  Google Scholar 

  21. Caulfield, B., McHugh, P.E., Lohfeld, S.: Dependence of mechanical properties of polyamide components on build parameters in the SLS process. J. Mater. Process. Technol. 182, 477–488 (2007). https://doi.org/10.1016/j.jmatprotec.2006.09.007

    Article  Google Scholar 

  22. Park, S.I., Rosen, D.W., Choi, S.K., Duty, C.E.: Effective mechanical properties of lattice material fabricated by material extrusion additive manufacturing. Addit. Manuf. 1, 12–23 (2014). https://doi.org/10.1016/j.addma.2014.07.002

    Article  Google Scholar 

  23. Park, S., Rosen, D.W.: Quantifying effects of material extrusion additive manufacturing process on mechanical properties of lattice structures using as-fabricated voxel modeling. Addit. Manuf. 12, 265–273 (2016). https://doi.org/10.1016/j.addma.2016.05.006

    Article  Google Scholar 

  24. Suard, M., Martin, G., Lhuissier, P., Dendievel, R., Vignat, F., Blandin, J.J., Villeneuve, F.: Mechanical equivalent diameter of single struts for the stiffness prediction of lattice structures produced by electron beam melting. Addit. Manuf. 8, 124–131 (2015). https://doi.org/10.1016/j.addma.2015.10.002

    Article  Google Scholar 

  25. de Formanoir, C., Suard, M., Dendievel, R., Martin, G., Godet, S.: Improving the mechanical efficiency of electron beam melted titanium lattice structures by chemical etching. Addit. Manuf. 11, 71–76 (2016). https://doi.org/10.1016/j.addma.2016.05.001

    Article  Google Scholar 

  26. Luxner, M.H., Stampfl, J., Pettermann, H.E.: Finite element modeling concepts and linear analyses of 3D regular open cell structures. J. Mater. Sci. 40, 5859–5866 (2005). https://doi.org/10.1007/s10853-005-5020-y

    Article  Google Scholar 

  27. Wallach, J.C., Gibson, L.J.: Mechanical behavior of a three-dimensional truss material. Int. J. Solids Struct. 38, 7181–7196 (2001). https://doi.org/10.1016/S0020-7683(00)00400-5

    Article  MATH  Google Scholar 

  28. Ptochos, E., Labeas, G.: Shear modulus determination of cuboid metallic open-lattice cellular structures by analytical, numerical and homogenisation methods. Strain 48, 415–429 (2012). https://doi.org/10.1111/j.1475-1305.2012.00837.x

    Article  Google Scholar 

  29. Campoli, G., Borleffs, M.S., Amin Yavari, S., Wauthle, R., Weinans, H., Zadpoor, A.A.: Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing. Mater. Des. (2013). https://doi.org/10.1016/j.matdes.2013.01.071

    Google Scholar 

  30. Dallago, M., Fontanari, V., Winiarski, B., Zanini, F., Carmignato, S., Benedetti, M.: Fatigue properties of Ti6Al4V cellular specimens fabricated via SLM: CAD vs real geometry. Proc. Struct. Integr. 7, 116–123 (2017). https://doi.org/10.1016/j.prostr.2017.11.068

    Article  Google Scholar 

  31. Dallago, M., Benedetti, M., Luchin, V., Fontanari, V.: Orthotropic elastic constants of 2D cellular structures with variously arranged square cells: the effect of filleted wall junctions. Int. J. Mech. Sci. 122, 63–78 (2017). https://doi.org/10.1016/j.ijmecsci.2016.12.026

    Article  Google Scholar 

  32. Xiong, J., Gu, D., Chen, H., Dai, D., Shi, Q.: Structural optimization of re-entrant negative Poisson’s ratio structure fabricated by selective laser melting. Mater. Des. 120, 307–316 (2017). https://doi.org/10.1016/j.matdes.2017.02.022

    Article  Google Scholar 

  33. Bendsøe, M.P., Sigmund, O.: Topology Optimization. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  34. PA 2200 Performance 1.0 | PA12. https://eos.materialdatacenter.com/eo/

  35. Roberts, A.P., Garboczi, E.J.: Elastic moduli of model random three-dimensional closed-cell cellular solids. Acta Mater. 49, 189–197 (2001). https://doi.org/10.1016/S1359-6454(00)00314-1

    Article  Google Scholar 

  36. Amado-Becker, A., Ramos-Grez, J., Yañez, M.J., Vargas, Y., Gaete, L.: Elastic tensor stiffness coefficients for SLS Nylon 12 under different degrees of densification as measured by ultrasonic technique. Rapid Prototyp. J. 14, 260–270 (2008). https://doi.org/10.1108/13552540810907929

    Article  Google Scholar 

  37. Stanković, T., Mueller, J., Shea, K.: The effect of anisotropy on the optimization of additively manufactured lattice structures. Addit. Manuf. 17, 67–76 (2017). https://doi.org/10.1016/j.addma.2017.07.004

    Article  Google Scholar 

  38. Choy, S.Y., Sun, C.-N., Leong, K.F., Wei, J.: Compressive properties of Ti–6Al–4V lattice structures fabricated by selective laser melting: design, orientation and density. Addit. Manuf. 16, 213–224 (2017). https://doi.org/10.1016/j.addma.2017.06.012

    Article  Google Scholar 

  39. Wauthle, R., Vrancken, B., Beynaerts, B., Jorissen, K., Schrooten, J., Kruth, J.P., Van Humbeeck, J.: Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures. Addit. Manuf. 5, 77–84 (2015). https://doi.org/10.1016/j.addma.2014.12.008

    Article  Google Scholar 

  40. ANSYS Mechanical APDL Command Reference. ANSYS, Inc. SAS IP, Inc., Southpointe 275 Technology Drive Canonsburg (2013)

  41. Cerardi, A., Caneri, M., Meneghello, R., Concheri, G., Ricotta, M.: Mechanical characterization of polyamide cellular structures fabricated using selective laser sintering technologies. Mater. Des. 46, 910–915 (2013). https://doi.org/10.1016/j.matdes.2012.11.042

    Article  Google Scholar 

  42. Koizumi, Y., Okazaki, A., Chiba, A., Kato, T., Takezawa, A.: Cellular lattices of biomedical Co–Cr–Mo-alloy fabricated by electron beam melting with the aid of shape optimization. Addit. Manuf. 12, 305–313 (2016). https://doi.org/10.1016/j.addma.2016.06.001

    Article  Google Scholar 

  43. Kohnke, P. (ed.): ANSYS Theory Reference, Release 5.6. ANSYS, Inc. SAS IP, Inc., Southpointe 275 Technology Drive Canonsburg (1999)

  44. ISO 527-1: Determination of tensile properties. Part 1: general principles (2012)

  45. ISO 527-2: Determination of tensile properties. Part 2: test conditions for moulding and extrusion plastics (2012)

  46. Fahad, M., Hopkinson, N.: Evaluation and comparison of geometrical accuracy of parts produced by sintering-based additive manufacturing processes. Int. J. Adv. Manuf. Technol. 88, 3389–3394 (2017). https://doi.org/10.1007/s00170-016-9036-z

    Article  Google Scholar 

  47. Deshpande, V.S., Ashby, M.F., Fleck, N.A.: Foam topology: bending versus stretching dominated architectures. Acta Mater. 49, 1035–1040 (2001). https://doi.org/10.1016/S1359-6454(00)00379-7

    Article  Google Scholar 

  48. Fleck, N.A., Deshpande, V.S., Ashby, M.F.: Micro-architectured materials: past, present and future. Proc. R. Soc. A Math. Phys. Eng. Sci. 466, 2495–2516 (2010). https://doi.org/10.1098/rspa.2010.0215

    Article  Google Scholar 

  49. Crawford, C.: The Art of Interactive Design: A Euphonious and Illuminating Guide to Building Successful Software. No Starch Press Inc., San Francisco (2003)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge generous in-kind support from 3Dfast Srl and Andrea Sandi for fabricating test parts and Mario Saraceni of Enginlab Srl for the tensile test machine. This work was partially supported by the Grants “FSE 2105-116-2216-2016” by Regione Veneto and “BIRD175287/17” by Department of Civil, Environmental and Architectural Engineering ICEA—University of Padua.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianpaolo Savio.

Additional information

Publisher’s Note

Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savio, G., Curtarello, A., Rosso, S. et al. Homogenization driven design of lightweight structures for additive manufacturing. Int J Interact Des Manuf 13, 263–276 (2019). https://doi.org/10.1007/s12008-019-00543-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-019-00543-0

Keywords

Navigation