Skip to main content
Log in

An interoperability process between CAD system and CAE applications based on CAD data

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Over the last years, computer-aided design (CAD) has developed rapidly thanks to integrated applications. These applications, namely CAD-integrated applications, have the ability to resolve many industrial challenges related to the design process such as assembly/disassembly sequence planning or computer-aided process planning. The implementation of these applications depends essentially on data extracted from the CAD model. However, the accessibility to these data remains a complex task for CAD-integrated application developers. The aim of this work is modelling and implementing a CAD-integrated system named CADLAB\(^{\copyright }\) which automatically identifies and generates a diversity of data from a CAD assembly model under exploitable forms. The modelling of this system is performed using MBSE tool which is systems modelling language. The computer implementation of CADLAB is carried out with several software packages such as Solidworks\(^{\copyright }\), Excel\(^{\copyright }\) and MATLAB\(^{\copyright }\). With CADLAB system, the identifiable CAD data are the assembly components and constraints’ data. Whereas, the generated CAD data represent the assembly interference matrices as well as several assembly related matrices. The developed system was tested on several CAD examples and the obtained results were verified. The correctness of these results proves the efficiency of CADLAB to carry out CAD data extraction and then enhance the interoperability process between CAD system and CAE applications. The proposed method can help designers find the CAD assembly data in complex mechanical assembly model, facilitate the structuring of the useful designing data, and thereby improve the efficiency of product knowledge reuse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

CAD:

Computer aided design

CAE:

Computer aided engineering

ASP/DSP:

Assembly/disassembly sequence planning

CAPP:

Computer-aided process planning

MBSE:

Model-based systems engineering

SysML:

Systems modelling language

CADLAB:

Computer aided laboratory

STEP:

Standard for the exchange of product model data

CAE:

Computer aided engineering

ID:

Component identification number

\([R_{n}]\) :

Relationship matrix

\(R_{n(i,j)}\) :

Element of the relationship matrix that indicates the existence of relationships between the component i and j

[A]:

Adjacency matrix

\(A_{(i,j)}\) :

Element of the adjacency matrix that indicates the existence of contacts between the component i and j

\([C_{k}]\) :

Contact matrix

\(C_{k(i,j)}\) :

Element of the contact matrix that indicates the existence of contacts between the component i and j along the k axis

\([I_{k}]\) :

Interference matrix

\(I_{k(i,j)}\) :

Indicates the existence of an interference between component i and j when moving part i along the k-axis

GUI:

Graphical user interface

API:

Application programming interfaces

DIT:

Dynamic interference test

References

  1. Nayaran, K., Raw, K., Sarcar, M.: Computer Aided Design and Manufacturing. Prentice Hall of India, New Delhi (2008). ISBN: 978-81-203-3341-0

  2. Belkadi, F., Troussier, N., Eynard, B., Bonjour, E.: Collaboration based on product lifecycles interoperability for extended enterprise. Int. J. Interact. Des. Manuf. 4, 169 (2010). https://doi.org/10.1007/s12008-010-0099-z

    Article  Google Scholar 

  3. Stroud, I., Nagy, H.: Solid Modelling and CAD Systems: How to Survive a CAD System. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  4. Iacob, R., Mitrouchev, P., Léon, J.C.: Assembly simulation incorporating component mobility modelling based on functional surfaces. Int. J. Interact. Des. Manuf. 5, 119 (2011). https://doi.org/10.1007/s12008-011-0120-1

    Article  Google Scholar 

  5. Farin, G., Hosckek, J., Kim, M.: Handbook of Computer Aided Geometric Design. Elsevier, Amsterdam (2002). ISBN: 978-0-444-51104-1

    Google Scholar 

  6. Benhadj, R., Trigui, M., Aifaoui, N.: Toward an integrated CAD assembly sequence planning solution. J. Mech. Eng. Sci. Part C 229(16), 2987–3001 (2015)

    Article  Google Scholar 

  7. Trigui, M., Belhadj, I., Benamara, A.: Disassembly plan approach based on subassembly concept. Int. J. Adv. Manuf. Technol. (2016). https://doi.org/10.1007/s00170-016-9363-0

    Google Scholar 

  8. Belhadj, I., Trigui, M., Benamara, A.: Subassembly generation algorithm from a CAD model. Int. J. Adv. Manuf. Technol. (2016). https://doi.org/10.1007/s00170-016-8637-x

    Google Scholar 

  9. Trigui, M., Benhadj, R., Aifaoui, N.: An interoperability CAD assembly sequence plan approach. Int. J. Adv. Manuf. Technol. (2015). https://doi.org/10.1007/s00170-015-6855-2

    Google Scholar 

  10. Kheder, M., Trigui, M., Aifaoui, N.: Optimization of disassembly sequence planning for preventive maintenance. Int. J. Adv. Manuf. Technol. (2016). https://doi.org/10.1007/s00170-016-9434-2

    Google Scholar 

  11. Kheder, M., Trigui, M., Aifaoui, N.: A Disassembly Sequence Planning Approach for Maintenance. Part of the Series Lecture Notes in Mechanical Engineering (2016). https://doi.org/10.1007/978-3-319-45781-9_9

  12. Issaoui, L., Aifaoui, N., Benamara, A.: Model of mobility state of parts: the automation of feasibility test in disassembly sequence generation. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. (2016). https://doi.org/10.1177/0954406216654196

    Google Scholar 

  13. Issaoui, L., Aifaoui, N., Benamara, A.: Modelling and implementation of geometric and technological information for disassembly simulation in CAD environment. Int. J. Adv. Manuf. Technol. (2016). https://doi.org/10.1007/s00170-016-9128-9

    Google Scholar 

  14. Hamdi, M., Aifaoui, N., Louhichi, B., Benamara, A.: Idealization of CAD model for a simulation by a finite element method. Eur. J. Comput. Mech. 19(4), 419–439 (2010)

    Article  Google Scholar 

  15. Culler, D.E., Burd, W., Kim, M.: A framework for extending computer aided process planning to include business activities and computer aided design and manufacturing (CAD/CAM), data retrieval. Robot. Comput. Integr. Manuf. 23, 339–350 (2007)

    Article  Google Scholar 

  16. Ou, L.M., Xu, X.: Relationship matrix based automatic assembly sequence generation from a CAD model. Comput. Aided Des. 45(7), 1053–1067 (2013)

    Article  Google Scholar 

  17. Zha, X., Du, H.: A PDES/STEP-based model and system for concurrent integrated design and assembly planning. Comput. Aided Des. 34, 1087–1110 (2002)

    Article  Google Scholar 

  18. Gottipolu, R.B., Ghosh, K.: A simplified and efficient representation for evaluation and selection of assembly sequences. Comput. Ind. 50, 251–264 (2003)

    Article  Google Scholar 

  19. Su, Q.: Computer aided geometric feasible assembly sequence planning and optimizing. Int. J. Adv. Manuf. Technol. 33, 48–57 (2007)

    Article  Google Scholar 

  20. Tching, L., Dumont, G., Perret, J.: Interactive simulation of CAD models assemblies using virtual constraint guidance. Int. J. Interact. Des. Manuf. 4, 95 (2010). https://doi.org/10.1007/s12008-010-0091-7

    Article  Google Scholar 

  21. Alfadhlani, T., Samadhi, A.M., Toha, I.: Automatic collision detection for assembly sequence planning using a three-dimensional solid model. J. Adv. Manuf. Syst. 10, 277–291 (2011)

    Article  Google Scholar 

  22. Linn, R.J., Li, H.: An automatic assembly liaison extraction method and assembly liaison model. IIE Trans. 31(4), 353–363 (1999)

    Google Scholar 

  23. Pan, C., Smith, S.S.F., Smith, G.C.: Determining interference between parts in CAD STEP files for automatic assembly planning. J. Comput. Inf. Sci. Eng. 5(1), 56–62 (2005)

    Article  Google Scholar 

  24. Xiao, J., Anwer, N., Durupt, A., Le Duigou, J., Eynard, B.: Information exchange standards for design, tolerancing and additive manufacturing: a research review. Int. J. Interact. Des. Manuf. (2007). https://doi.org/10.1007/s12008-017-0401-4

    Google Scholar 

  25. Wang, Y., Liu, J.: Subassembly identification for assembly sequence planning. Int. J. Adv. Manuf. Technol. 68(1–4), 781–793 (2013)

    Article  Google Scholar 

  26. Li, Y.L., Gao, J.M., Shi, L., Wang, S.: Assembly modeling for 3d component based on polychromatic sets. Adv. Mater. Res. 411, 388–392 (2012)

    Article  Google Scholar 

  27. Giri, R., Kanthababu, M.: Generating complete disassembly sequences by utilising two-dimensional views. Int. J. Prod. Res. 35(2), 1–21 (2015)

    Google Scholar 

  28. Yu, J., Xu, L.D., Bi, Z., Wang, C.: Extended interference matrices for exploded view of assembly planning. IEEE Trans. Autom. Sci. Eng. 11(1), 279–286 (2014)

    Article  Google Scholar 

  29. Bahubalendruni, M.R., Biswal, B.B.: Computer aid for automatic liaisons extraction from cad based robotic assembly. In: IEEE 8th International Conference on Intelligent Systems and Control (ISCO), 10 Jan 2014, pp. 42–45 (2014)

  30. Bahubalendruni, M.R., Biswal, B.B., Kumar, M., Deepak, B.B.: A note on mechanical feasibility predicate for robotic assembly sequence generation. In: CAD/CAM, Robotics and Factories of the Future, pp. 397–404. Springer (2016)

  31. Bahubalendruni, M.R., Biswal, B.B.: Liaison concatenation-A method to obtain feasible assembly sequences from 3D-CAD product. Sadhana 41(1), 67–74 (2016)

    Article  MathSciNet  Google Scholar 

  32. Bahubalendruni, M.R., Biswal, B.B.: A review on assembly sequence generation and its automation. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 230(5), 824–38 (2016)

    Article  Google Scholar 

  33. Bahubalendruni, M.R., Biswal, B.B., Kumar, M., Nayak, R.: Influence of assembly predicate consideration on optimal assembly sequence generation. Assem. Autom. 35(4), 309–16 (2015)

    Article  Google Scholar 

  34. Bahubalendruni, M.R., Biswal, B.B.: An intelligent approach towards optimal assembly sequence generation. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. (2016). https://doi.org/10.1177/0954406216684159

  35. Viganò, R., Osorio Gómez, G.: Automatic assembly sequence exploration without precedence definition. Int. J. Interact. Des. Manuf. 7, 79 (2013). https://doi.org/10.1007/s12008-012-0165-9

    Article  Google Scholar 

  36. Smith, S.S.F., Smith, G.C., Liao, X.: Automatic stable assembly sequence generation and evaluation. J. Manuf. Syst. 20(4), 225–235 (2001)

    Article  Google Scholar 

  37. Bahubalendruni, M.V., Biswal, B.B.: Computer aid for stability testing between parts towards automatic assembly sequence generation. J. Comput. Technol. Appl. 7(1), 22–6 (2016)

    Google Scholar 

  38. Kumar, M., Bahubalendruni, M.V., Biswal, B.B., Nayak, R.: Identification of stable configurations between constituent parts of an assembly. Appl. Mech. Mater. 852, 595–601 (2016)

    Article  Google Scholar 

  39. Bedeoui, A., Ben Hadj, R., Trigui, M., Aifaoui, N.: Generation of Assembly Sequence Planning Based on the Mechanism Stability, Design and Modelling of Mechanical Systems, Hammamet (2017)

  40. Mathew, A., Rao, C.S.P.: A CAD system for extraction of mating features in an assembly. Assem. Autom. 30, 142–146 (2010)

    Article  Google Scholar 

  41. Mathew, A., Rao, C.S.P.: A novel method of using API to generate liaison relationships from an assembly. J. Softw. Eng. Appl. 3(2), 142–146 (2010)

    Article  Google Scholar 

  42. Ma, Y.S., Britton, G.A., Tor, S.B., Jin, L.Y.: Associative assembly design features: concept, implementation and application. Int. J. Adv. Manuf. Technol. 32, 434–444 (2007)

    Article  Google Scholar 

  43. Mhenni, F., Choley, J.Y., Penas, O., Plateaux, R., Hammadi, M.: A SysML-based methodology for mechatronic systems architectural design. Adv. Eng. Inf. (2014). https://doi.org/10.1016/j.aei.2014.03.006

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nizar Aifaoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadj, R.B., Belhadj, I., Gouta, C. et al. An interoperability process between CAD system and CAE applications based on CAD data. Int J Interact Des Manuf 12, 1039–1058 (2018). https://doi.org/10.1007/s12008-017-0445-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-017-0445-5

Keywords

Navigation