Skip to main content

Advertisement

Log in

Environmental-energy analysis and the importance of design and remanufacturing recycled materials

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

This paper proposes a framework that interrelates the life cycle of the product, remanufacturing and recycling for plastics. The paper analyses the different chemical processes of recycling polymer wastes. We introduce a thermodynamic calculation of the energy consumed and CO\(_2\) emissions for all types of waste (municipal, electronic, vehicle). The remanufacturing process could reduce the amount of CO\(_2\) emissions through feedback to the product design stage with robust platforms that extend the product life cycle. In order to meet the requirements of remanufacturing we combine mechanical and chemical recycling solutions. These recycling processes must undergo a thermodynamic analysis to optimize energy and decrease the minimum CO\(_2\) emissions, i.e. recycling processes in line with the ultimate objective, which is the reduction of CO\(_2\) emissions and slowing a part of the problem global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Monks, P.S., et al.: Atmospheric composition change—global and regional air quality. Atmos. Environ. 43, 5268–5350 (2009)

    Article  Google Scholar 

  2. Rosa, L.P., Schaeffer, R.: Global warming potentials. Energy Policy 23(2), 149–158 (1995)

    Article  Google Scholar 

  3. Johnson, M., Edwards, R., Frenk, C.A., Masera, O.: In-field greenhouse gas emissions from cookstoves in rural Mexican households. Atmos. Environ. 42, 1206–1222 (2008)

    Article  Google Scholar 

  4. Wassmann, R., Pathak, H.: Introducing greenhouse gas mitigation as a development objective in rice-based agriculture: II. Cost-benefit assessment for different technologies, regions and scales. Agric. Syst. 94, 826–840 (2007)

    Article  Google Scholar 

  5. CAPE-Last Interglacial Project Members: Last Interglacial Arctic warmth confirms polar amplification of climate change. Quat. Sci. Rev. 25, 1383–1400 (2006)

    Article  Google Scholar 

  6. Reyes, A.V., Froese, D.G., Jensen, B.J.: Permafrost response to last interglacial warming: field evidence from non-glaciated Yukon and Alaska. Quat. Sci. Rev. 29(23), 3256–3274 (2010)

    Article  Google Scholar 

  7. Joos, F., Bruno, M.: Pulse response functions are cost-efficient tools to model the link between carbon emissions, atmospheric CO\(_2\) and global warming. Phys. Chem. Earth 21(5–6), 471–476 (1996)

    Article  Google Scholar 

  8. Damghani, A.M., Savarypour, G., Zand, E., Deihimfard, R.: Municipal solid waste management in Tehran: current practices, opportunities and challenges. Waste Manag. 28, 934–944 (2009)

    Google Scholar 

  9. Carvalho, M.T., Agante, E., Durão, F.: Recovery of PET from packaging plastics mixtures by wet shaking table. Waste Manag. 27, 1747–1754 (2007)

    Article  Google Scholar 

  10. Dodbiba, G., Sadaki, J., Okaya, K., Shibayama, A., Fujita, T.: The use of air tabling and triboelectric separation for separating a mixture of three plastics. Miner. Eng. 18, 1350–1360 (2005)

    Article  Google Scholar 

  11. Mohabuth, N., Hall, P., Miles, N.: Investigating the use of vertical vibration to recover metal from electrical and electronic waste. Miner. Eng. 20, 926–932 (2007)

    Article  Google Scholar 

  12. Andresen, P.A.K., Arntzen, R., Sjøblom, J.: Stability of model emulsions and determination of droplet size distributions in a gravity separator with different inlet characteristics. Colloids Surf. A: Physicochem. Eng. Asp. 170, 33–44 (2000)

    Article  Google Scholar 

  13. Shen, H., Forssberg, E., Pugh, R.J.: Selective flotation separation of plastics by particle control. Resour. Conserv. Recycl. 33(1), 37–50 (2001)

    Article  Google Scholar 

  14. Chu, C.P., Lee, D.J., Tay, J.H.: Gravitational sedimentation of flocculated waste activated sludge. Water Res. 37, 155–163 (2003)

    Article  Google Scholar 

  15. Pongstabodee, S., Kunachitpimo, N., Damronglerd, S.: Combination of three-stage sink-float method and selective flotation technique for separation of mixed post-consumer plastic waste. Waste Manag. 28, 475–483 (2008)

    Article  Google Scholar 

  16. Gent, M.R., Menendez, M., Toraño, J., Isidro, D.: Cylinder cyclone (LARCODEMS) density media separation of plastic wastes. Waste Manag. 29, 1819–1827 (2009)

    Article  Google Scholar 

  17. Duan, C., Wen, X., Shi, C., Zhao, Y., Wen, B., He, Y.: Recovery of metals from waste printed circuit boards by a mechanical method using a water medium. J. Hazard. Mater. 166, 478–482 (2009)

    Article  Google Scholar 

  18. Pascoe, R.D., Hou, Y.Y.: Investigation of the importance of particle shape and surface wettability on the separation of plastics in a Larcodems separator. Miner. Eng. 12, 423–431 (1999)

    Article  Google Scholar 

  19. Mantaux, O., Chibalon, L., Lorriot, Th, Aurrekoetxea, J., Puerto, A., Arostegi, A., Urrutibeascoa, I.: Recycling study of end of life products made of ABS resin. J. Mater. Sci. Technol. 20(Suppl), 1 (2004)

    Google Scholar 

  20. Alter, H.: The recovery of plastics from waste with reference to froth flotation. Resour. Conserv. Recycl. 43, 119–132 (2005)

    Article  Google Scholar 

  21. Takoungsakdakun, T., Pongstabodee, S.: Separation of mixed post-consumer PET-POM-PVC plastic waste using selective flotation. Sep. Purif. Technol. 54, 248–252 (2007)

    Article  Google Scholar 

  22. Shent, H., Pugh, R.J., Forssberg, E.: A review of plastics waste recycling and the flotation of plastics. Resour. Conserv. Recycl. 25, 85–109 (1999)

    Article  Google Scholar 

  23. Fraunholcz, N.: Separation of waste plastics by froth flotation—a review, part I. Miner. Eng. 17, 261–268 (2004)

    Article  Google Scholar 

  24. Shen, H., Pugh, R.J., Forssberg, E.: Floatability, selectivity and flotation separation of plastics by using a surfactant. Colloids Surf. A: Physicochem. Eng. Asp. 196, 63–70 (2002)

    Article  Google Scholar 

  25. Le Guern, C., Conil, I.P., Houot, R.: Role of calcium ions in the mechanism of action of a lignosulphonate used to modify the wettability of plastics for their separation by flotation. Miner. Eng. 13, 53–63 (2000)

    Article  Google Scholar 

  26. Carvalho, T., Durão, F., Ferreira, C.: Separation of packaging plastics by froth flotation in a continuous pilot plant. Waste Manag. 30, 2209–2215 (2010)

    Article  Google Scholar 

  27. Sadat-Shojai, M., Bakhshandeh, G.-R.: Recycling of PVC wastes. Polym. Degrad. Stab. 96, 404–415 (2011)

    Article  Google Scholar 

  28. Yoshida, M., Nakatsukas, S., Nanba, M., Gotoh, K., Zushi, T., Kubo, Y., Oshitani, J.: Decrease of Cl contents in waste plastics using a gas–solid fluidized bed separator. Adv. Powder Technol. 21, 69–74 (2010)

    Article  Google Scholar 

  29. Jiang, W., Jia, L., Zhen-ming, X.: New two-roll electrostatic separator for recycling of metals and nonmetals from waste printed circuit board. J. Hazard. Mater. 161, 257–262 (2009)

    Article  Google Scholar 

  30. Park, C.-H., Jeon, H.-S., Park, J.-K.: PVC removal from mixed plastics by triboelectrostatic separation. J. Hazard. Mater. 144, 470–476 (2007)

    Article  Google Scholar 

  31. Schlett, Z., Claici, F., Mihalca, I., Lungu, M.: A new static separator for metallic particles from metal-plastic mixtures, using eddy currents. Miner. Eng. 15, 111–113 (2002)

    Article  Google Scholar 

  32. Schlett, Z., Lungu, M.: Eddy-current separator with inclined magnetic disc. Miner. Eng. 15, 365–367 (2002)

    Article  Google Scholar 

  33. Reddy, M.S., Kurose, K., Okuda, T., Nishijima, W., Okada, M.: Separation of polyvinyl chloride (PVC) from automobile shredder residue (ASR) by froth flotation with ozonation. J. Hazard. Mater. 147, 1051–1055 (2007)

    Article  Google Scholar 

  34. Shen, H., Forssberg, E., Pugh, R.J.: Selective flotation separation of plastics by chemical conditioning with methyl cellulose. Resour. Conserv. Recycl. 35, 229–241 (2002)

    Article  Google Scholar 

  35. Tachwali, Y., Al-Assaf, Y., Al-Ali, A.R.: Automatic multistage classification system for plastic bottles recycling. Resour. Conserv. Recycl. 52, 266–285 (2007)

    Article  Google Scholar 

  36. Bezati, F., Froelich, D., Massardier, V., Maris, E.: Addition of X-ray fluorescent tracers into polymers, new technology for automatic sorting of plastics: proposal for selecting some relevant tracers. Resour. Conserv. Recycl. 55(12), 1214–1221 (2011)

    Article  Google Scholar 

  37. Jones, E.H., Smith, C.C.: Non-equilibrium partitioning tracer transport in porous media: 2-D physical modelling and imaging using a partitioning fluorescent dye. Water Res. 39, 5099–5111 (2005)

    Article  Google Scholar 

  38. Bezati, F., Froelich, D., Massardier, V., Maris, E.: Addition of tracers into the polypropylene in view of automatic sorting of plastic wastes using X-ray fluorescence spectrometry. Waste Manag. 30, 591–596 (2010)

    Article  Google Scholar 

  39. Bastek, J., Stolwijk, N.A., Köster, ThK-J, van Wüllen, L.: Systematics of salt precipitation in complexes of polyethylene oxide and alkali metal iodides. Electrochimica Acta 55, 1289–1297 (2010)

    Article  Google Scholar 

  40. Ventura Jr., E., Nearing, M.A., Norton, L.D.: Developing a magnetic tracer to study soil erosion. CATENA 43, 277–291 (2001)

    Article  Google Scholar 

  41. Gente, V., La Marca, F., Lucci, F., Massacci, P.: Electrical separation of plastics coming from special waste. Waste Manag. 23, 951–958 (2003)

    Article  Google Scholar 

  42. Gente, V., La Marca, F., Lucci, F., Massacci, P., Pani, E.: Cryo-comminution of plastic waste. Waste Manag. 24, 663–672 (2004)

    Article  Google Scholar 

  43. Adem, E., Avalos-Borja, M., Carrillo, D., Vazquez, M., Sanchez, E., Carreon, M.P., Burillo, G.: Crosslinking of recycled polyethylene by gamma and electron beam irradiation. Radiat. Phys. Chem. 52, 171–176 (1998)

    Article  Google Scholar 

  44. Gad, Y.H., Magid, M.M., El-Nahas, H.H.: Effect of ionizing irradiation on the thermal blend of waste low density polyethylene/ethylene vinyl acetate/bitumen for some industrial applications. J. Ind. Eng. Chem. 16, 1019–1024 (2010)

    Article  Google Scholar 

  45. Yoshii, F., Meligiz, G., Sasaki, T., Makuuchi, K., Rabie, A.M., Nishimoto, S.: Effect of irradiation on the degradability of polypropylene in the natural environment. Polym. Degrad. Stab. 49, 315–321 (1995)

    Article  Google Scholar 

  46. Singh, A.: Irradiation of polymer blends containing a polyolefin. Radiat. Phys. Chem. 60, 453–459 (2001)

    Article  Google Scholar 

  47. Burillo, G., Clough, R.L., Czvikovszky, T., Guven, O., Le Moel, A., Liu, W., Singh, A., Yang, J., Zaharescu, T.: Polymer recycling: potential application of radiation technology. Radiat. Phys. Chem. 64, 41–51 (2002)

    Article  Google Scholar 

  48. Khait, K., Riddick, E.G., Torkelson, J.M.: http://www.Sperecycling.org/GPEC/GPEC2002/papers/0137.PDF. Recovery of Post-Consumer Plastic Waste Via Solid State Mechanochemistry (2002)

  49. Khait, K., Torkelson, J.M.: Solid-state shear pulverization of plastics: a green recycling process. Polym. Plast. Technol. Eng. 38, 445–457 (1999)

    Article  Google Scholar 

  50. Furgiuele, N., Lebovitz, A.H., Khait, K., Torkelson, J.M.: Efficient mixing of polymer blends of extreme viscosity ratio: Elimination of phase inversion via solid-state shear pulverization. Polym. Eng. Sci. 40(6), 1447–1457 (2000)

    Article  Google Scholar 

  51. Lebovitz, A.H., Khait, K., Torkelson, J.M.: Efficient mixing of polymer blends of extreme viscosity ratio: elimination of phase inversion via solid-state shear pulverization. Polym. Eng. Sci. 40, 1447–1457 (2000)

    Article  Google Scholar 

  52. Lebovitz, A.H.: Ph.D. thesis, Northwestern University (2003)

  53. Cavalieri, F., Padella, F.: Development of composite materials by mechanochemical treatment of post-consumer plastic waste. Waste Manag. 22(8), 913–916 (2002)

    Article  Google Scholar 

  54. Cavalieri, F., Padella, F., Bourbonneux, S., Romanelli C.: Mechanochemical recycling of mixed plastic waste. In: First International Conference on Polymer Modification, Degradation, Stabilization, Palermo, Italy, 3–7 September (2000)

  55. Padella, F., Filacchioni, G., La Barbera, A., Magini, M., Plescia, G.P.: Patent No. RM98000372 (1998)

  56. Lebovitz, A.H., Khait, K., Torkelson, J.M.: Sub-micron dispersed-phase particle size in polymer blends: overcoming the Taylor limit via solid-state shear pulverization. Orig. Res. Artic. Polym. 44, 199–206 (2003)

  57. Bilgili, E., Arastoopour, H., Bernstein, B.: Pulverization of rubber granulates using the solid-state shear extrusion SSSE/process: part I process concepts and characteristics. Powder Technol. 115, 265–276 (2001)

    Article  Google Scholar 

  58. Schocke, D., Arastoopour, H., Bernstein, B.: Pulverization of rubber under high compression and shear. Powder Technol. 102, 207–214 (1999)

    Article  Google Scholar 

  59. http://www.worldometers.info/cars/. Accessed Nov 2015

  60. http://www.revistamene.com/nuevo/index2.php?option=com_content&do_pdf=1&id=1787. Accessed Sept 2013

  61. Leão, A.L., Tan, I.H.: Potential of municipal solid waste (MSW) as a source of energy in São Paulo: its impact on CO\(_2\) balance. Biomass Bioenerg. 14, 83–89 (1998)

    Article  Google Scholar 

  62. http://petrolnews.net/noticia.php?ID=7d13938ee3aebee856f9e9badfa349c8&r=15896. Accessed July 2015

  63. Nnorom, I.C., Osibanjo, O.: Electronic waste (e-waste): material flows and management practices in Nigeria. Waste Manag. 28, 1472–1479 (2008)

    Article  Google Scholar 

  64. Deng, L., Babbitt, C.W., Williams, E.D.: Economic-balance hybrid LCA extended with uncertainty analysis: case study of a laptop computer. J. Clean. Prod. 19, 1198–1206 (2011)

    Article  Google Scholar 

  65. Chung, S.S., Poon, C.S.: Evaluating waste management alternatives by the multiple criteria approach. Resour. Conserv. Recycl. 17, 189–210 (1996)

    Article  Google Scholar 

  66. Kaseva, M.E., Mbuligwe, S.E., Kassenga, G.: Recycling inorganic domestic solid wastes: results from a pilot study in Dar es Salaam City Tanzania. Resour. Conserv. Recycl. 35, 243–257 (2002)

    Article  Google Scholar 

  67. Yau, Y.: Domestic waste recycling, collective action and economic incentive: the case in Hong Kong. Waste Manag. 30, 2440–2447 (2010)

    Article  Google Scholar 

  68. Seik, F.T.: Recycling of domestic waste: early experiences in Singapore. Habitat. Int. 21, 277–289 (1997)

    Article  Google Scholar 

  69. Subramanian, P.M.: Plastics recycling and waste management in the US. Resour. Conserv. Recycl. 28, 253–263 (2000)

    Article  Google Scholar 

  70. Confédération suisse, Quelle est la quantité de CO\(_2\) émise par la consommation d’un kilowattheure (kWh) d’électricité en Suisse?, Office fédéral de l’environnement OFEV (2008)

  71. Achilias, D.S., Roupakias, C., Megalokonomos, P., Lappas, A.A., Antonakou, E.V.: Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). J. Hazard. Mater. 149, 536–542 (2007)

    Article  Google Scholar 

  72. Aymonier, C., Loppinet-Serani, A., Reverón, H., Garrabos, Y., Cansell, F.: Review of supercritical fluids in inorganic materials science. J. Supercrit. Fluids 38, 242–251 (2006)

    Article  Google Scholar 

  73. Mantaux, O., Aymonier, C., Antal, M.: Recycling of carbon fibre reinforced composite materials with super-critical water dissolution. In: 16th National Composite Days Proceeding, Toulouse (2009)

  74. Tagaya, H., Katoh, K., Kadokawa, J., Chiba, K.: Decomposition of polycarbonate in subcritical and supercritical water. Polym. Degrad. Stab. 64, 289–292 (1999)

    Article  Google Scholar 

  75. Sato, Y., Kondo, Y., Tsujita, K., Kawai, N.: Degradation behaviour and recovery of bisphenol-A from epoxy resin and polycarbonate resin by liquid-phase chemical recycling. Polym. Degrad. Stab. 89, 317–326 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Perry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jimenez, F., Pompidou, S. & Perry, N. Environmental-energy analysis and the importance of design and remanufacturing recycled materials. Int J Interact Des Manuf 10, 241–249 (2016). https://doi.org/10.1007/s12008-016-0321-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-016-0321-8

Keywords

Navigation