Skip to main content
Log in

A physically-based shape morphing algorithm for packing and layout applications

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

In this paper, a fast and efficient shape morphing algorithm specifically designed for packing and layout applications is presented. The shape morphing algorithm is based on a modified mass-spring system which is used to model the morphable object. The shape morphing algorithm mimics a quasi-physical process similar to inflation/deflation of a balloon filled with air. The morphing algorithm starts with an initial manifold geometry and morphs it to obtain a desired volume such that the obtained geometry does not interfere with the objects surrounding it. The change in geometry is achieved by simulating the motion of mass points situated at the vertices of the surface mesh. We propose several modifications to the original mass-spring system and to the underlying physics that governs it to significantly speed-up the shape morphing process. The proposed shape morphing algorithm is designed to address the specific requirements for layout design. The morphable object is represented as a closed non-intersecting surface mesh consisting of triangular facets. An algorithm to automatically generate the mass-spring model from an arbitrary manifold geometry is also proposed. The surface mesh generated by the morphing algorithm is suitable for use during the conceptual design phase of the vehicle layout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Tiwari, S., Fadel, G., Gantovnik, V.: A survey of various encoding schemes and associated placement algorithms applied to packing and layout problems. In ASME: IDETC/CIE Conference, Number DETC2006-99271, Philadelphia (2006)

  2. Martello, S., Pisinger, D., Vigo, D.: The three-dimensional bin packing problem. Oper. Res. 48(2), 256–267 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cagan, J., Shimada, K., Yin, S.: A survey of computational approaches to three-dimensional layout problems. Comput Aided Des. 34, 597–611 (2002)

    Article  Google Scholar 

  4. Yin, S., Cagan, J.: An extended pattern search algorithm for three-dimensional component layout. Trans. ASME 122, 102–108 (2000)

  5. Ikonen, I., Biles, W.E., Kumar, A., Ragade, R.K., Wissel, J.C.: A genetic algorithm for packing three-dimensional non-convex objects having cavities and holes. In: Proceedings of the 7th International Conference on Genetic Algorithms, pp. 591–598, East Lansing (1997)

  6. Blouin, V.Y., Fadel, G.M., Summers, J.D., Fenyes, P.A.: Three-dimensional packing by a heuristic-based sequential genetic algorithm. In: 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Number AIAA 2006-6906, Portsmouth (2006)

  7. Eisenbrand, F., Funke, S., Karrenbauer, A., Reichel, J., Schomer, E.: Packing a trunk—now with a twist. In: SPM 2005 Proceedings of the 2005 ACM Symposimum on Solid and Physical Modeling, pp. 197–206 (2005)

  8. Althaus, E., Baumann, T., Schomer, E., Werth, K.: Trunk Packing Revisited, vol. 4525. In: Lecture Notes in Computer Science, pp. 420–432. Springer, Berlin (2007)

  9. Durupt, A., Remy, S., Ducellier, G., Bricogne, M.: KBRE: a proposition of a reverse engineering process by a KBE system. Int. J. Interact. Des. Manuf. 4(4), 227–237 (2010)

    Article  Google Scholar 

  10. Toma, M., Girbacia, F., Antonya, C.: A comparative evaluation of human interaction for design and assembly of 3D CAD models in desktop and immersive environments. Int. J. Interact. Des. Manuf. 6(3), 179–193 (2012)

    Article  Google Scholar 

  11. Kang, S., Peng, Q.: Integration of CAD models with product assembly planning in a web-based 3D visualized environment. Int. J. Interact. Des. Manuf. 8(2), 121–131 (2014)

    Article  Google Scholar 

  12. Nosenzo, V., Tornincasa, S., Bonisoli, E., Brino, M.: Open questions on product lifecycle management with CAD/CAE integration. Int. J. Interact. Des. Manuf. 8(2), 91–107 (2014)

    Article  Google Scholar 

  13. Tiwari, S., Teegavarapu, S., Summers, J., Fadel, G.: Automating morphological chart exploration: a multi-objective genetic algorithm to address compatibility and uncertainty (2014) (submitted)

  14. Benabes, J., Bennis, F., Poirson, E., Ravaut, Y.: Interactive optimization strategies for layout problems. Int. J. Interact. Des. Manuf. 4(3), 181–190 (2010)

    Article  Google Scholar 

  15. Vigano, R., Gomez, G.: Automatic assembly sequence exploration without precedence definition. Int. J. Interact. Des. Manuf. 7(2), 79–89 (2013)

    Article  Google Scholar 

  16. Tiwari, S., Fadel, G., Fenyes, P., Kloess, A.: An envelope generation algorithm for packing and layout applications. Int. J. Interact. Des. Manuf. (2014). doi:10.1007/s12008-014-0216-5

  17. Alexa, M.: Recent advances in mesh morphing. Comput. Graph. Forum 21(2), 173–198 (2002)

    Article  Google Scholar 

  18. Chen, Y., Stewart, P.J., Buttolo, P., Ren, F.: A real-time, interactive method for fast modification of large-scale CAE mesh models. In: ASME 2000 IDETC/CIE Conference, DETC00/DAC-14268 (2000)

  19. Lazarus, F., Verroust, A.: Three-dimensional metamorphosis: a survey. Vis. Comput. 14(8–9), 373–389 (1998)

    Article  Google Scholar 

  20. Moore, P., Molloy, D.: A survey of computer based deformation models. In: Machine Vision and Image Processing Conference, pp. 55–66 (2007)

  21. Terzopoulos, D., Waters, K.: Physically based facial modeling, analysis, and animation. J. Vis. Comput. Anim. 1(2), 73–80 (1990)

    Article  Google Scholar 

  22. Gregory, A., State, A., Lin, M.C., Manocha, D., Livingston, M.A.: Interactive surface decomposition for polyhedral morphing. Vis. Comput. 15(9), 453–470 (1999)

    Article  Google Scholar 

  23. Wolberg, G.: Image morphing: a survey. Vis. Comput. 14(8–9), 360–372 (1998)

    Article  Google Scholar 

  24. Chu, C.C.N., Young, E.F.Y.: Nonrectangular shaping and sizing of soft modules for floorplan design improvement. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 23(1), 71–79 (2004)

    Article  Google Scholar 

  25. Kang, M., Dai, W.W.M.: General floor planning with l-shaped, t-shaped, and soft blocks based on bounded slicing grid structure. In: 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2005-451 (2005)

  26. Yin, S., Cagan, J., Hodges, P.: Layout optimization of shapeable components with extended pattern search applied to transmission design. J. Mech. Des. 126(1), 188–201 (2004)

    Article  Google Scholar 

  27. Ding, Q., Cagan, J.: Automated trunk packing with extended pattern search. In: Technical report, SAE International, 2003-01-0671 (2003)

  28. Faulkenberg, S.: Bilevel mathematical programming: methodology and application in packaging. Master’s thesis, Clemson University (2005)

  29. Kim, J., Pellacini, F.: Jigsaw image mosaics. ACM Trans. Graph. 21(3), 657–664 (2002)

    Google Scholar 

  30. Kegl, M.: Parameterization based shape optimization: theory and practical implementation aspects. Eng. Comput. 22(5–6), 646–663 (2005)

    Article  MATH  Google Scholar 

  31. Fudge, D.M., Zingg, D.W.: A CAD-free and CAD-based geometry control system for aerodynamic shape optimization. In 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2005-451 (2005)

  32. Samareh, J.A.: Survey of shape parameterization techniques for high-fidelity multidisciplinary shape optimization. AIAA J. 39(5), 877–884 (2001)

    Article  Google Scholar 

  33. Alonso, J., Martins, J., Reuther, J., Haimes, R., Crawford, C.: High fidelity aero structural design using a parametric CAD based model. In 16th AIAA Computational Fluid Dynamics Conference, AIAA-2003-3429 (2003)

  34. Zhang, W., Beckers, P., Fleury, C.: A unified parametric design approach to structural shape optimization. Int. J. Numer. Methods Eng. 38(13), 2283–2292 (2005)

    Article  Google Scholar 

  35. Botkin, M.E.: Three-dimensional shape optimization using fully automatic mesh generation. AIAA J. 30(7), 1932–1934 (1992)

  36. Fenyes, P.A., Donndelinger, J.A., Bourassa, J.F.: A new system for multidisciplinary analysis and optimization of vehicle architectures. In: 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA 2002-5509 (2002)

  37. Welch, W., Witkin, A.: Free-form shape design using triangulated surfaces. In: SIGGRAPH 94: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, pp. 247–256. ACM, New York (1994)

  38. Chen, Y., Tonshal, B., Saeed, A.: Geometric surface features applied to volumetric CAE mesh models. In: ASME 2005 IDETC/CIE Conference, DETC2005-84214 (2005)

  39. Koch, R.M., Gross, M.H., Carls, F.R., Von Buren, D.F., Fankhauser, G., Parish, Y.I.H.: Simulating facial surgery using finite element models. In: SIGGRAPH, pp. 421–428. ACM, New York (1996)

  40. Matyka, M., Ollila, M.: A pressure model for soft body simulation. In: SIGRAD2003 (2003)

  41. Terzopoulos, D.: Elastically deformable models. ACM SIGGRAPH Comput. Graph. 21(4), 205–214 (1987)

    Article  Google Scholar 

  42. Ehmann, S.A., Lin, M.C.: Accurate and fast proximity queries between polyhedra using convex surface decomposition. Comput. Graph. Forum 20(3), 500–510 (2001)

    Article  Google Scholar 

  43. Larsen, E., Gottschalk, S., Lin, M.C., Manocha, D.: Fast proximity queries with swept sphere volumes. In: Proceedings of International Conference on Robotics and Automation, pp. 3719–3726 (2000)

  44. Gottschalk, S., Lin, M.C., Manocha, D.: OBBTree: a hierarchical structure for rapid interference detection. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 171–180 (1996)

  45. Lin, M.C., Gottschalk, S.: Collision detection between geometric models: a survey. In: Proceedings of IMA Conference on Mathematics of Surfaces, pp. 37–56 (1998)

  46. Berge, G.V.D.: Proximity queries and penetration depth computation on 3D game objects. In: Game Developers Conference (2001)

  47. Teschner, M., Kimmerle, S., Heidelberger, G., Zachmann, L., Raghupathi, L., Fuhrmann, A., Cani, M.P., Faure, F., Magnenat-Thalmann, N., Strasser, W., Volino, P.: Collision detection for deformable objects. Comput. Graph. Forum 24(1), 61–81 (2005)

    Article  Google Scholar 

  48. Aharon, S., Lenglet, C.: Collision detection algorithm for deformable objects using OpenGL. Lect. Notes Comput. Sci. 2849, 211–218 (2002)

  49. Jones, T.R., Durand, F., Desbrun, M.: Non-iterative, feature-preserving mesh smoothing. ACM Trans. Graph. 22(3), 943–949 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Automotive Research Center (ARC) and General Motors Research & Development. The views presented here do not necessarily reflect those of our sponsors whose support is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Tiwari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, S., Dong, H., Fadel, G. et al. A physically-based shape morphing algorithm for packing and layout applications. Int J Interact Des Manuf 9, 277–289 (2015). https://doi.org/10.1007/s12008-014-0237-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-014-0237-0

Keywords

Navigation