Skip to main content
Log in

Sex-specific Differences of the Infraacetabular Corridor: A Biomorphometric CT-based Analysis on a Database of 523 Pelves

  • Basic Research
  • Published:
Clinical Orthopaedics and Related Research®

A CORR Insights to this article was published on 22 October 2014

Abstract

Background

An infraacetabular screw path facilitates the closure of a periacetabular fixation frame to increase the plate fixation strength in acetabular fractures up to 50%. Knowledge of the variance in corridor sizes and axes has substantial surgical relevance for safe screw placement.

Questions/purposes

(1) What proportion of healthy pelvis specimens have an infraacetabular corridor that is 5 mm or larger in diameter? (2) Does a universal corridor axis and specific screw entry point exist? (3) Are there sex-specific differences in the infraacetabular corridor size or axis and are these correlated with anthropometric parameters like age, body weight and height, or the acetabular diameter?

Methods

A template pelvis with a mean shape from 523 segmented pelvis specimens was generated using a CT-based advanced image analyzing system. Each individual pelvis was registered to the template using a free-form registration algorithm. Feasible surface regions for the entry and exit points of the infraacetabular corridor were marked on the template and automatically mapped to the individual samples to perform a measurement of the maximum sizes and axes of the infraacetabular corridor on each specimen. A minimum corridor diameter of at least 5 mm was defined as a cutoff for placing a 3.5-mm cortical screw in clinical settings.

Results

In 484 of 523 pelves (93%), an infraacetabular corridor with a diameter of at least 5 mm was found. Using the mean axis angulations (54.8° [95% confidence interval {CI}, 0.6] from anterocranial to posterocaudal in relation to the anterior pelvic plane and 1.5° [95% CI, 0.4] from anteromedial to posterolateral in relation to the sagittal midline plane), a sufficient osseous corridor was present in 64% of pelves. Allowing adjustment of the three-dimensional axis by another 5° included an additional 25% of pelves. All corridor parameters were different between females and males (corridor diameter, 6.9 [95% CI, 0.2] versus 7.7 [95% CI, 0.2] mm; p < 0.001; corridor length, 96.2 [95% CI, 0.7] versus 106.4 [95% CI, 0.6] mm; p < 0.001; anterior pelvic plane angle, 54.0° [95% CI, 0.9] versus 55.3° [95% CI, 0.8]; p < 0.01; sagittal midline plane angle, 4.3° [95% CI, 0.6] versus −0.3° [95% CI, 0.5]; p < 0.001).

Conclusion

This study provided reference values for placement of a 3.5-mm cortical screw in the infraacetabular osseous corridor in 90% of female and 94% of male pelves. Based on the sex-related differences in corridor axes, the mean screw trajectory is approximately parallel to the sagittal midline plane in males but has to be tilted from medial to lateral in females. Considering the narrow corridor diameters, we suggest an individual preoperative CT scan analysis for fine adjustments in each patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–D
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Attias N, Lindsey RW, Starr AJ, Borer D, Bridges K, Hipp JA. The use of a virtual three-dimensional model to evaluate the intraosseous space available for percutaneous screw fixation of acetabular fractures. J Bone Joint Surg Br. 2005;87:1520–1523.

    Article  CAS  PubMed  Google Scholar 

  2. Bible JE, Choxi AA, Kadakia RJ, Evans JM, Mir HR. Quantification of bony pelvic exposure through the modified Stoppa approach. J Orthop Trauma. 2014;28:320–323.

    Article  PubMed  Google Scholar 

  3. Chang JK, Gill SS, Zura RD, Krause WR, Wang GJ. Comparative strength of three methods of fixation of transverse acetabular fractures. Clin Orthop Relat Res. 2001;392:433–441.

    Article  PubMed  Google Scholar 

  4. Chen CM, Chiu FY, Lo WH, Chung TY. Cerclage wiring in displaced both-column fractures of the acetabulum. Injury. 2001;32:391–394.

    Article  CAS  PubMed  Google Scholar 

  5. Chen KN, Wang G, Cao LG, Zhang MC. Differences of percutaneous retrograde screw fixation of anterior column acetabular fractures between male and female: a study of 164 virtual three-dimensional models. Injury. 2009;40:1067–1072.

    Article  PubMed  Google Scholar 

  6. Cole JD, Bolhofner BR. Acetabular fracture fixation via a modified Stoppa limited intrapelvic approach. Description of operative technique and preliminary treatment results. Clin Orthop Relat Res. 1994;305:112–123.

    Article  PubMed  Google Scholar 

  7. Culemann U, Marintschev I, Gras F, Pohlemann T. Infra-acetabular corridor—technical tip for an additional screw placement to increase the fixation strength of acetabular fractures. J Trauma. 2011;70:244–246.

    Article  PubMed  Google Scholar 

  8. Ebraheim NA, Xu R, Biyani A, Benedetti JA. Anatomic basis of lag screw placement in the anterior column of the acetabulum. Clin Orthop Relat Res. 1997;339:200–205.

    Article  PubMed  Google Scholar 

  9. Farid YR. Cerclage wire-plate composite for fixation of quadrilateral plate fractures of the acetabulum: a checkrein and pulley technique. J Orthop Trauma. 2010;24:323–328.

    Article  PubMed  Google Scholar 

  10. Gras F, Marintschev I, Klos K, Muckley T, Hofmann GO, Kahler DM. Screw placement for acetabular fractures: which navigation modality (2-dimensional vs 3-dimensional) should be used? An experimental study. J Orthop Trauma. 2012;26:466–473.

    Article  PubMed  Google Scholar 

  11. Gras F, Marintschev I, Schwarz CE, Hofmann GO, Pohlemann T, Culemann U. Screw- versus plate-fixation strength of acetabular anterior column fractures: a biomechanical study. J Trauma Acute Care Surg. 2012;72:1664–1670.

    Article  PubMed  Google Scholar 

  12. Guerado E, Cano JR, Cruz E. Fractures of the acetabulum in elderly patients: an update. Injury. 2012;43(Suppl 2):S33–41.

    Article  PubMed  Google Scholar 

  13. Guy P, Al-Otaibi M, Harvey EJ, Helmy N. The ‘safe zone’ for extra-articular screw placement during intra-pelvic acetabular surgery. J Orthop Trauma. 2010;24:279–283.

    Article  PubMed  Google Scholar 

  14. Huang X, Paragios N, Metaxas DN. Shape registration in implicit spaces using information theory and free form deformations. IEEE Trans Pattern Anal Mach Intell. 2006;28:1303–1318.

    Article  PubMed  Google Scholar 

  15. Huegli RW, Staedele H, Messmer P, Regazzoni P, Steinbrich W, Gross T. Displaced anterior column acetabular fracture: closed reduction and percutaneous CT-navigated fixation. Acta Radiol. 2004;45:618–621.

    Article  CAS  PubMed  Google Scholar 

  16. Judet R, Judet J, Letournel E. Fractures of the acetabulum: classification and surgical approaches for open reduction. preliminary report. J Bone Joint Surg Am. 1964;46:1615–1646.

    CAS  PubMed  Google Scholar 

  17. Kendoff D, Citak M, Gardner MJ, Stubig T, Krettek C, Hufner T. Intraoperative 3D imaging: value and consequences in 248 cases. J Trauma. 2009;66:232–238.

    Article  PubMed  Google Scholar 

  18. Kendoff D, Gardner MJ, Citak M, Kfuri M Jr, Thumes B, Krettek C, Hufner T. Value of 3D fluoroscopic imaging of acetabular fractures comparison to 2D fluoroscopy and CT imaging. Arch Orthop Trauma Surg. 2008;128:599–605.

    Article  CAS  PubMed  Google Scholar 

  19. Khajavi K, Lee AT, Lindsey DP, Leucht P, Bellino MJ, Giori NJ. Single column locking plate fixation is inadequate in two column acetabular fractures. A biomechanical analysis. J Orthop Surg Res. 2010;5:30.

  20. Laflamme GY, Hebert-Davies J, Rouleau D, Benoit B, Leduc S. Internal fixation of osteopenic acetabular fractures involving the quadrilateral plate. Injury. 2011;42:1130–1134.

    Article  CAS  PubMed  Google Scholar 

  21. Letournel E, Judet R. Operative treatment of specific types of fractures. In: Smith WR, Ziran BH, Morgan SJ, eds. Fractures of the Acetabulum. 2nd ed. Berlin and Heidelberg, Germany; New York, NY, USA; Philadelphia, PA, USA: Lippincott Williams & Wilkins; 1993:436–441.

  22. Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR. Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg Am. 1978;60:217–220.

    CAS  PubMed  Google Scholar 

  23. Lin HH, Hung SH, Su YP, Chiu FY, Liu CL. Cerclage wiring in displaced associated anterior column and posterior hemi-transverse acetabular fractures. Injury. 2012;43:917–920.

    Article  PubMed  Google Scholar 

  24. Marintschev I, Gras F, Schwarz CE, Pohlemann T, Hofmann GO, Culemann U. Biomechanical comparison of different acetabular plate systems and constructs–the role of an infra-acetabular screw placement and use of locking plates. Injury. 2012;43:470–474.

    Article  PubMed  Google Scholar 

  25. Matta JM. Fractures of the acetabulum: accuracy of reduction and clinical results in patients managed operatively within three weeks after the injury. J Bone Joint Surg Am. 1996;78:1632–1645.

    CAS  PubMed  Google Scholar 

  26. Matta JM, Anderson LM, Epstein HC, Hendricks P. Fractures of the acetabulum. A retrospective analysis. Clin Orthop Relat Res. 1986;205:230–240.

    PubMed  Google Scholar 

  27. Mayo KA. Open reduction and internal fixation of fractures of the acetabulum. Results in 163 fractures. Clin Orthop Relat Res. 1994;305:31–37.

    PubMed  Google Scholar 

  28. Mu WD, Wang XQ, Jia TH, Zhou DS, Cheng AX. Quantitative anatomic basis of antegrade lag screw placement in posterior column of acetabulum. Arch Orthop Trauma Surg. 2009;129:1531–1537.

    Article  PubMed  Google Scholar 

  29. Ochs BG, Marintschev I, Hoyer H, Rolauffs B, Culemann U, Pohlemann T, Stuby FM. Changes in the treatment of acetabular fractures over 15 years: analysis of 1266 cases treated by the German Pelvic Multicentre Study Group (DAO/DGU). Injury. 2014 Jul 7. pii: S0020-1383(14)00319-2. doi: 10.1016/j.injury.2014.06.026 [Epub ahead of print].

  30. Ochs BG, Stuby FM, Ateschrang A, Stoeckle U, Gonser CE. Retrograde lag screw placement in anterior acetabular column with regard to the anterior pelvic plane and midsagittal plane—virtual mapping of 260 three-dimensional hemipelvises for quantitative anatomic analysis. Injury. 2014;2014/07/27.

  31. Puchwein P, Enninghorst N, Sisak K, Ortner T, Schildhauer TA, Balogh ZJ, Pichler W. Percutaneous fixation of acetabular fractures: computer-assisted determination of safe zones, angles and lengths for screw insertion. Arch Orthop Trauma Surg. 2012;132:805–811.

    Article  PubMed  Google Scholar 

  32. Qureshi AA, Archdeacon MT, Jenkins MA, Infante A, DiPasquale T, Bolhofner BR. Infrapectineal plating for acetabular fractures: a technical adjunct to internal fixation. J Orthop Trauma. 2004;18:175–178.

    Article  PubMed  Google Scholar 

  33. Reilly MC, Bono CM, Litkouhi B, Sirkin M, Behrens FF. The effect of sacral fracture malreduction on the safe placement of iliosacral screws. J Orthop Trauma. 2003;17:88–94.

    Article  PubMed  Google Scholar 

  34. Sagi HC, Afsari A, Dziadosz D. The anterior intra-pelvic (modified Rives-Stoppa) approach for fixation of acetabular fractures. J Orthop Trauma. 2010;24:263–270.

    Article  PubMed  Google Scholar 

  35. Schopfer A, Willett K, Powell J, Tile M. Cerclage wiring in internal fixation of acetabular fractures. J Orthop Trauma. 1993;7:236–241.

    Article  CAS  PubMed  Google Scholar 

  36. Schröder M, Gottschling H, Reimers N, Hauschild M, Burgkart R. Automated morphometric analysis of the femur on large anatomical database with highly accurate correspondence detection. Open Medical Journal. 2014;1:15–22.

    Article  Google Scholar 

  37. Shahulhameed A, Roberts CS, Pomeroy CL, Acland RD, Giannoudis PV. Mapping the columns of the acetabulum—implications for percutaneous fixation. Injury. 2010;41:339–342.

    Article  PubMed  Google Scholar 

  38. Surup T, Hänler A, Homeier A, Petersik A, Oldenburg G, Burgkart R. Verfahren zur Referenzmodellerstellung für die Evaluierung CT-basierter Segmentierung des Kortikalis-Spongiosa-Überganges im Femur. In: Meinzer HP, Deserno TM, Handels H, Tolxdorff T, eds. Bildverarbeitung für die Medizin. Berlin, Heidelberg, Germany: Springer-Verlag; 2013.

    Google Scholar 

  39. Tannast M, Siebenrock KA. [Operative treatment of T-type fractures of the acetabulum via surgical hip dislocation or Stoppa approach] [in German]. Oper Orthop Traumatol. 2009;21:251–269.

    Article  PubMed  Google Scholar 

  40. Whiteside JL, Walters MD. Anatomy of the obturator region: relations to a trans-obturator sling. Int Urogynecol J Pelvic Floor Dysfunct. 2004;15:223–226.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr Jürgen Schwarz for help with the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Gras PD Dr med.

Additional information

One of the authors (NR) is an employee of Stryker Trauma GmbH, Kiel, Germany.

All ICMJE Conflict of Interest Forms for authors and Clinical Orthopaedics and Related Research ® editors and board members are on file with the publication and can be viewed on request.

Clinical Orthopaedics and Related Research ® neither advocates nor endorses the use of any treatment, drug, or device. Readers are encouraged to always seek additional information, including FDA-approval status, of any drug or device prior to clinical use.

Each author certifies that his institution approved or waived approval for the human protocol for this investigation and that all investigations were conducted in conformity with ethical principles of research.

This work was performed at the Friedrich-Schiller University, Jena, Germany, and the Klinikum r.d. Isar, Technische Universität in München, Munich, Germany.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gras, F., Gottschling, H., Schröder, M. et al. Sex-specific Differences of the Infraacetabular Corridor: A Biomorphometric CT-based Analysis on a Database of 523 Pelves. Clin Orthop Relat Res 473, 361–369 (2015). https://doi.org/10.1007/s11999-014-3932-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-014-3932-z

Keywords

Navigation