Skip to main content
Log in

What Causes Unexplained Pain in Patients With Metal-on metal Hip Devices? A Retrieval, Histologic, and Imaging Analysis

  • Symposium: 2013 Hip Society Proceedings
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Background

Adverse tissue reactions associated with metal-on-metal (MOM) hips are common in resurfacing and total hip arthroplasty (THA) designs. The etiology of these reactions in painful, well-positioned arthroplasties is inconsistently described.

Questions/purposes

The purposes of this study were to compare the (1) articular wear rates; (2) histologic findings; (3) synovial response on MRI; and (4) graded intraoperative tissue damage between well-positioned, MOM hips revised for unexplained pain and MOM hips revised for other reasons and to (5) determine whether the presence of a taper junction on a MOM articulation affects these four parameters in unexplained pain.

Methods

We retrospectively studied 88 patients (94 hips) who had undergone revision of either a hip resurfacing or a large-head (> 36 mm) THA. Thirty-five hips revised for unexplained pain were compared with a control group of 59 hips revised for other causes. Articular wear was measured using three-dimensional contactless metrology and histologic analysis was performed using the aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL) score. Preoperative MRI was performed on 57 patients to determine synovial volumes and thicknesses. Tissue damage was graded from intraoperative reports.

Results

Articular wear rates in the unexplained pain group were lower than in the control group (median 2.6 μm/year versus 12.8 μm/year, p < 0.001). Sixty-six percent of patients in the unexplained pain group had histologic confirmation of ALVAL compared with 19% in the control group (p < 0.001). The synovial thickness on MRI was higher in the unexplained pain group (p = 0.04) and was highly predictive of ALVAL. Severe intraoperative tissue damage was noted in more cases in the unexplained pain group (p = 0.01). There were no differences in articular wear, histology, MRI, and tissue damage between resurfacings and THAs revised for unexplained pain.

Conclusions

Unexplained pain in patients with well-positioned MOM hips warrants further investigation with MRI to look for features predictive of ALVAL. Tissue destruction in these cases does not appear to be related to high bearing wear or the presence of a taper.

Level of Evidence

Level III, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–B
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7A–B
Fig. 8A–B
Fig. 9

Similar content being viewed by others

References

  1. Amstutz HC, Le Duff MJ, Campbell PA, Wisk LE, Takamura KM. Complications after metal-on-metal hip resurfacing arthroplasty. Orthop Clin North Am. 2011;42:207–230.

    Article  PubMed  Google Scholar 

  2. Amstutz HC, Le Duff MJ, Johnson AJ. Socket position determines hip resurfacing 10-year survivorship. Clin Orthop Relat Res. 2012;470:3127–3133.

    Article  PubMed  Google Scholar 

  3. Australian Orthopedic Association. National Joint Replacement Registry Report. Annual Report. Adelaide: AOA; 2011. Available at: www.aoa.org.au. Accessed June 15, 2013.

  4. Bozic KJ, Kurtz S, Lau E, Ong K, Chiu V, Vail TP, Rubash HE, Berry DJ. The epidemiology of bearing surface usage in total hip arthroplasty in the United States. J Bone Joint Surg Am. 2009;91:1614–1620.

    Article  PubMed  Google Scholar 

  5. Campbell P, Ebramzadeh E, Nelson S, Takamura K, De Smet K, Amstutz HC. Histological features of pseudotumor-like tissues from metal-on-metal hips. Clin Orthop Relat Res. 2010;468:2321–2327.

    Article  PubMed  Google Scholar 

  6. Chana R, Esposito C, Campbell PA, Walter WK, Walter WL. Mixing and matching causing taper wear: corrosion associated with pseudotumour formation. J Bone Joint Surg Br. 2012;94:281–286.

    Article  CAS  PubMed  Google Scholar 

  7. Cooper HJ, Della Valle CJ, Berger RA, Tetreault M, Paprosky WG, Sporer SM, Jacobs JJ. Corrosion at the head-neck taper as a cause for adverse local tissue reactions after total hip arthroplasty. J Bone Joint Surg Am. 2012;94:1655–1661.

    PubMed  Google Scholar 

  8. De Haan R, Campbell PA, Su EP, De Smet KA. Revision of metal-on-metal resurfacing arthroplasty of the hip: the influence of malpositioning of the components. J Bone Joint Surg Br. 2008;90:1158–1163.

    Article  PubMed  Google Scholar 

  9. De Steiger RN, Hang, JR, Miller LN, Graves SE, Davidson DC. Five-year results of the ASR XL acetabular system and the ASR hip resurfacing system. An analysis from the Australian Orthopaedic Association National Joint Replacement Registry. J Bone Joint Surg Am. 2011;93:2287–2293.

    Article  PubMed  Google Scholar 

  10. Donell ST, Darrah C, Nolan JF, Wimhurst J, Toms A, Barker TH, Case CP, Tucker JK. Norwich Metal-on-Metal Study Group. Early failure of the Ultima metal-on-metal total hip replacement in the presence of normal plain radiographs. J Bone Joint Surg Br. 2010;92:1501–1508.

    Article  CAS  PubMed  Google Scholar 

  11. Ebramzadeh E, Campbell PA, Takamura KM, Lu Z, Sangiorgio SN, Kalma JJ, De Smet KA, Amstutz HC. Failure modes of 433 metal-on-metal hip implants: how, why, and wear. Orthop Clin North Am. 2011;42:241–250.

    Article  PubMed  Google Scholar 

  12. Garbuz DS, Tanzer M, Greidanus NV, Masri BA, Duncan CP. The John Charnley Award: Metal-on-metal hip resurfacing versus large-diameter head metal-on-metal total hip arthroplasty: a randomized clinical trial. Clin Orthop Relat Res. 2010;468:318–325.

    Article  PubMed  Google Scholar 

  13. Glyn-Jones S, Roques A, Taylor A, Kwon YM, McLardy-Smith P, Gill HS, Walter W, Tuke M, Murray D. The in vivo linear and volumetric wear of hip resurfacing implants revised for pseudotumor. J Bone Joint Surg Am. 2011;93:2180–2188.

    Article  PubMed  Google Scholar 

  14. Goldberg JR, Gilbert JL, Jacobs JJ, Bauer TW. A multicenter retrieval study of the hip prostheses. Clin Orthop Relat Res. 2002;401:149–161.

    Article  PubMed  Google Scholar 

  15. Grammatopolous G, Pandit H, Kamali A, Maggiani F, Glyn-Jones S, Gill HS, Murray DW, Athanasou N. The correlation of wear with histological features after failed hip resurfacing arthroplasty. J Bone Joint Surg Am. 2013;95:e811-10.

    Google Scholar 

  16. Hart AJ, Ilo K, Underwood R, Cann P, Henckel J, Lewis A, Cobb J, Skinner J. The relationship between the angle of version and rate of wear of retrieved metal-on-metal resurfacings: a prospective, CT-based study. J Bone Joint Surg Br. 2011;93:315–320.

    Article  CAS  PubMed  Google Scholar 

  17. Hart AJ, Matthies A, Henckel J, Ilo K, Skinner J, Noble P. Understanding why metal-on-metal hip arthroplasties fail. A comparison between patients with well-functioning and revised Birmingham Hip Resurfacing arthroplasties. J Bone Joint Surg Am. 2012;94:1–10.

    Google Scholar 

  18. Hart AJ, Sabah SA, Bandi AS, Maggiore P, Tarassoli P, Sampson B, Skinner JA. Sensitivity and specificity of blood cobalt and chromium metal ions for predicting failure of metal-on-metal hip replacement. J Bone Joint Surg Br. 2011;93:1308–1313.

    Article  CAS  PubMed  Google Scholar 

  19. Hart AJ, Sabah SA, Henckel J, Lewis A, Cobb J, Sampson B, Mitchell A, Skinner JA. The painful metal-on-metal hip resurfacing. J Bone Joint Surg Br. 2009;91:738–744.

    Article  CAS  PubMed  Google Scholar 

  20. Hart AJ, Satchithananda K, Liddle AD, Sabah SA, McRobbie D, Henckel J, Cobb JP, Skinner JA, Mitchell AW. Pseudotumors in association with well-functioning metal-on-metal hip prostheses: a case-control study using three-dimensional computed tomography and magnetic resonance imaging. J Bone Joint Surg Am. 2012;94:317–325.

    PubMed  Google Scholar 

  21. Hart AJ, Skinner JA, Henckel J, Sampson B, Gordon F. Insufficient acetabular version increases blood metal ion levels after metal-on-metal hip resurfacing. Clin Orthop Relat Res. 2011;469:2590–2597.

    Article  PubMed  Google Scholar 

  22. Heisel C, Streich N, Krachler M, Jakubowitz E, Kretzer JP. Characterization of the running-in period in total hip resurfacing arthroplasty: an in vivo and in vitro metal ion analysis. J Bone Joint Surg Am. 2008;90:125–134.

    Article  PubMed  Google Scholar 

  23. Huber M, Reinisch G, Trettenhahn G, Zweymüller K, Lintner F. Presence of corrosion products and hypersensitivity-associated reactions in periprosthetic tissue after aseptic loosening of total hip replacements with metal bearing surfaces. Acta Biomaterialia. 2009;5:172–180.

    Article  CAS  PubMed  Google Scholar 

  24. Jack CM, Walter WL, Shimmin AJ, Cashman K, de Steiger RN. Large diameter metal on metal articulations. Comparison of total hip arthroplasty and hip resurfacing arthroplasty. J Arthroplasty. 2013;28:650–653.

    Article  PubMed  Google Scholar 

  25. Kwon YM, Glyn-Jones S, Simpson DJ, Kamali A, McLardy-Smith P, Gill HS, Murray DW. Analysis of wear of retrieved metal-on-metal hip resurfacing implants revised due to pseudotumours. J Bone Joint Surg Br. 2010;92:356–361.

    Article  PubMed  Google Scholar 

  26. Kwon YM, Xia Z, Glyn-Jones S, Beard D, Gill HS, Murray DW. Dose-dependent cytotoxicity of clinically relevant cobalt nanoparticles and ions on macrophages in vitro. Biomed Mater. 2009;4:025018.

    Article  PubMed  Google Scholar 

  27. Langton DJ, Jameson SS, Joyce TJ, Gandhi JN, Sidaginamale R, Mereddy P, Lord J, Nargol AV. Accelerating failure rate of the ASR total hip replacement. J Bone Joint Surg Br. 2011;93:1011–1016.

    Article  CAS  PubMed  Google Scholar 

  28. Langton DJ, Jameson SS, Joyce TJ, Hallab NJ, Natu S, Nargol AV. Early failure of metal-on-metal bearings in hip resurfacing and large-diameter total hip replacement: a consequence of excess wear. J Bone Joint Surg Br. 2010;92:38–46.

    Article  CAS  PubMed  Google Scholar 

  29. Langton DJ, Joyce TJ, Jameson SS, Lord J, Van Orsouw M, Holland JP, Nargol AV, De Smet KA. Adverse reaction to metal debris following hip resurfacing: the influence of component type, orientation and volumetric wear. J Bone Joint Surg Br. 2011;93:164–171.

    Article  CAS  PubMed  Google Scholar 

  30. Langton DJ, Sprowson AP, Joyce TJ, Reed M, Carluke I, Partington P, Nargol AV. Blood metal ion concentrations after hip resurfacing arthroplasty: a comparative study of articular surface replacement and Birmingham Hip Resurfacing arthroplasties. J Bone Joint Surg Br. 2009;91:1287–1295.

    Article  CAS  PubMed  Google Scholar 

  31. Langton DJ, Sprowson AP, Mahadeva D, Bhatnagar S, Holland JP, Nargol AV. Cup anteversion in hip resurfacing: validation of EBRA and the presentation of a simple clinical grading system. J Arthroplasty. 2010;25:607–613.

    Article  PubMed  Google Scholar 

  32. Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR. Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg Am. 1978;60:217–220.

    CAS  PubMed  Google Scholar 

  33. Malek IA, King A, Sharma H, Malek S, Lyons K, Jones S, John A. The sensitivity, specificity and predictive values of raised plasma metal ion levels in the diagnosis of adverse reaction to metal debris in symptomatic patients with a metal-on-metal arthroplasty of the hip. J Bone Joint Surg Br. 2012;94:1045–1050.

    Article  CAS  PubMed  Google Scholar 

  34. Matthies A, Skinner JA, Osmani H, Henckel J, Hart AJ. Pseudotumors are common in well-positioned low-wearing metal-on-metal hips. Clin Orthop Relat Res. 2012;470:1895–1906.

    Article  PubMed  Google Scholar 

  35. Matthies A, Underwood R, Cann P, Ilo K, Nawaz Z, Skinner J, Hart AJ. Retrieval analysis of 240 metal-on-metal hip components, comparing modular total hip replacement with hip resurfacing. J Bone Joint Surg Br. 2011;93:307–314.

    Article  CAS  PubMed  Google Scholar 

  36. McArthur B, Cross M, Geatrakas C, Mayman D, Ghelman B. Measuring acetabular component version after THA: CT or plain radiograph? Clin Orthop Relat Res. 2012;470:2810–2818.

    Article  PubMed  Google Scholar 

  37. Meyer H, Mueller T, Goldau G, Chamaon K, Ruetschi M, Lohmann CH. Corrosion at the cone/taper interface leads to failure of large-diameter metal-on-metal total hip arthroplasties. Clin Orthop Relat Res. 2012;470:3101–3108.

    Article  PubMed  Google Scholar 

  38. Natu S, Sidaginamale RP, Gandhi J, Langton DJ, Nargol AV. Adverse reactions to metal debris: histopathological features of periprosthetic soft tissue reactions seen in association with failed metal on metal hip arthroplasties. J Clin Pathol. 2012;65:409–418.

    Article  PubMed  Google Scholar 

  39. Nawabi DH, Gold S, Lyman S, Fields K, Padgett DE, Potter HG. MRI predicts ALVAL and tissue damage in metal-on-metal hip arthroplasty. Clin Orthop Relat Res. 2013 Jan 26 [Epub ahead of print].

  40. Nawabi DH, Hayter CL, Su EP, Koff MF, Perino G, Gold SL, Koch KM, Potter HG. Magnetic resonance imaging findings in symptomatic versus asymptomatic subjects following metal-on-metal hip resurfacing arthroplasty. J Bone Joint Surg Am. 2013;95:895–902.

    Article  PubMed  Google Scholar 

  41. Pandit H, Glyn-Jones S, McLardy-Smith P, Gundle R, Whitwell D, Gibbons CL, Ostlere S, Athanasou N, Gill HS, Murray DW. Pseudotumours associated with metal-on-metal hip resurfacings. J Bone Joint Surg Br. 2008;90:847–851.

    Article  CAS  PubMed  Google Scholar 

  42. Potter HG, Foo LF. Magnetic resonance imaging of joint arthroplasty. Orthop Clin North Am. 2006;37:361–373.

    Article  PubMed  Google Scholar 

  43. Potter HG, Nestor BJ, Sofka CM, Ho ST, Peters LE, Salvati EA. Magnetic resonance imaging after total hip arthroplasty: evaluation of periprosthetic soft tissue. J Bone Joint Surg Am. 2004;86:1947–1954.

    PubMed  Google Scholar 

  44. Tuke M, Taylor A, Roques A, Maul C. 3D Linear and volumetric wear measurement on artificial hip joints—validation of a new methodology. Precision Engineering. 2010;34:777–783.

    Article  Google Scholar 

  45. Willert HG, Buchhorn GH, Fayyazi A, Flury R, Windler M, Koster G, Lohmann CH. Metal-on-metal bearings and hypersensitivity in patients with artificial hip joints. A clinical and histomorphological study. J Bone Joint Surg Am. 2005;87:28–36.

    Article  PubMed  Google Scholar 

  46. Williams DH, Greidanus NV, Masri BA, Duncan CP, Garbuz DS. Prevalence of pseudotumor in asymptomatic patients after metal-on-metal hip arthroplasty. J Bone Joint Surg Am. 2011;93:2164–2171.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Giorgio Perino MD, Hospital for Special Surgery, for grading the histology samples, Brett Lurie MD, Hospital for Special Surgery, for analyzing the MRI scans, and Stephanie Gold BA, for assistance with data collection. Danyal H. Nawabi MD, thanks the British Hip Society Charnley Latta Fund for supporting his fellowship training.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danyal H. Nawabi MD, FRCS (Orth).

Additional information

One or more of the authors certifies that he (EPS) or she, or a member of his or her immediate family, has or may receive payments or benefits, during the study period, an amount less than USD 100,000 from Smith & Nephew (Memphis, TN, USA). One or more of the authors certifies that he (TW) or she, or a member of his or her immediate family, has or may receive payments or benefits, during the study period, an amount less than USD 10,000, from Mathys ABG (Bettlach, Switzerland), and an amount USD 10,000 to USD 100,000, from Exactech (Great Neck, NY, USA). One or more of the authors certifies that he or she (HGP), or a member of his or her immediate family, has or may receive payments or benefits, during the study period, an amount less than USD 10,000, from Regentis Biomaterials Ltd (Or-Akiva, Israel), and receives institutional research support from General Electric Healthcare (Waukesha, WI, USA). One or more of the authors certifies that he (DEP) or she, or a member of his or her immediate family, has or may receive payments or benefits, during the study period, an amount less than USD 100,000 from MAKO (Fort Lauderdale, FL, USA) and an amount less than USD 10,000 from Stryker (Mahwah, NJ, USA).

All ICMJE Conflict of Interest Forms for authors and Clinical Orthopaedics and Related Research editors and board members are on file with the publication and can be viewed on request.

Clinical Orthopaedics and Related Research neither advocates nor endorses the use of any treatment, drug, or device. Readers are encouraged to always seek additional information, including FDA-approval status, of any drug or device prior to clinical use.

Each author certifies that his or her institution approved the human protocol for this investigation, that all investigations were conducted in conformity with ethical principles of research, and that informed consent for participation in the study was obtained.

About this article

Cite this article

Nawabi, D.H., Nassif, N.A., Do, H.T. et al. What Causes Unexplained Pain in Patients With Metal-on metal Hip Devices? A Retrieval, Histologic, and Imaging Analysis. Clin Orthop Relat Res 472, 543–554 (2014). https://doi.org/10.1007/s11999-013-3199-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-013-3199-9

Keywords

Navigation