Skip to main content
Log in

Surgical Revascularization Induces Angiogenesis in Orthotopic Bone Allograft

  • Symposium: Allograft Research and Transplantation
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Background

Remodeling of structural bone allografts relies on adequate revascularization, which can theoretically be induced by surgical revascularization. We developed a new orthotopic animal model to determine the technical feasibility of axial arteriovenous bundle implantation and resultant angiogenesis.

Questions/purposes

We asked whether arteriovenous bundles implanted in segmental allografts would increase cortical blood flow and angiogenesis compared to nonrevascularized frozen bone allografts and contralateral femoral controls.

Methods

We performed segmental femoral allotransplantation orthotopically from 10 Brown Norway rats to 20 Lewis rats. Ten rats each received either bone allograft reconstruction alone (Group I) or allograft combined with an intramedullary saphenous arteriovenous flap (Group II). At 16 weeks, we measured cortical blood flow with the hydrogen washout method. We then quantified angiogenesis using capillary density and micro-CT vessel volume measurements.

Results

All arteriovenous bundles were patent. Group II had higher mean blood flow (0.12 mL/minute/100 g versus 0.05 mL/minute/100 g), mean capillary density (23.6% versus 2.8%), and micro-CT vessel volume (0.37 mm3 versus 0.07 mm3) than Group I. Revascularized allografts had higher capillary density than untreated contralateral femora, while vessel volume did not differ and blood flow was lower.

Conclusions

Axial surgical revascularization in orthotopic allotransplants can achieve strong angiogenesis and increases cortical bone blood flow.

Clinical Relevance

Poor allograft revascularization results in frequent complications of nonunion, infection, and late stress fracture. The presented technique of surgical revascularization could therefore offer a beneficial adjunct to clinical segmental bone allografting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–B

Similar content being viewed by others

References

  1. Aponte-Tinao L, Farfalli GL, Ritacco LE, Ayerza MA, Muscolo DL. Intercalary femur allografts are an acceptable alternative after tumor resection. Clin Orthop Relat Res. 2012;470:728–734.

    Article  PubMed  Google Scholar 

  2. Baadsgaard K. Transplantation of pedicle bone grafts to fresh skeletal defects and defect pseudarthroses: an experimental study. Acta Orthop Scand. 1970;41:261–271.

    Article  PubMed  CAS  Google Scholar 

  3. Berrey BH, Lord CF, Gebhardt MC, Mankin HJ. Fractures of allografts: frequency, treatment, and end-results. J Bone Joint Surg Am. 1990;72:825–833.

    PubMed  Google Scholar 

  4. Carneiro R, Malinin T. Vascularized bone allografts: an experimental study in dogs. J Reconstr Microsurg. 1991;7:101–103.

    Article  PubMed  CAS  Google Scholar 

  5. Chung YG, Bishop AT, Giessler GA, Suzuki O, Platt JL, Pelzer M, Friedrich PF, Kremer T. Surgical angiogenesis: a new approach to maintain osseous viability in xenotransplantation. Xenotransplantation. 2010;17:38–47.

    Article  PubMed  Google Scholar 

  6. Davy TD. Biomechanical issues in bone transplantation. Orthop Clin North Am. 1999;30:553–563.

    Article  PubMed  CAS  Google Scholar 

  7. Delloye C, Cornu O, Druez V, Barbier O. Bone allografts: what they can offer and what they cannot. J Bone Joint Surg Br. 2007;89:574–579.

    Article  PubMed  CAS  Google Scholar 

  8. Delloye C, De Halleux J, Cornu O, Wegmann E, Buccafusca GC, Gigi J. Organizational and investigational aspects of bone banking in Belgium. Acta Orthop Belg. 1991;57:27–34.

    PubMed  Google Scholar 

  9. Dickerson RC, Duthie RB. The diversion of arterial blood flow to bone. J Bone Joint Surg Am. 1963;45:356–364.

    Google Scholar 

  10. Donati D, Di Bella C, Colangeli M, Bianchi G, Mercuri M. The use of massive bone allografts in bone tumour surgery of the limb. Curr Orthop. 2005;19:393–399.

    Article  Google Scholar 

  11. Donati D, Giacomini S, Gozzi E, Salphale Y, Mercuri M, Mankin HJ, Springfield DS, Gebhardt MC. Allograft arthrodesis treatment of bone tumors: a two-center study. Clin Orthop Relat Res. 2002;400:217–224.

    Article  PubMed  Google Scholar 

  12. Ehrlich PJ, Lanyon LE. Mechanical strain and bone cell function: a review. Osteoporos Int. 2002 13:688–700.

    Article  PubMed  CAS  Google Scholar 

  13. Enneking WF, Campanacci DA. Retrieved human allografts: a clinicopathological study. J Bone Joint Surg Am. 2001;83:971–986.

    PubMed  Google Scholar 

  14. Enneking WF, Mindell ER. Observations on massive retrieved human allografts. J Bone Joint Surg Am. 1991;73:1123–1142.

    PubMed  CAS  Google Scholar 

  15. Erkin UR, Kerem M, Tug M, Orbay H, Sensöz O. Prefabrication of a conjoint flap containing xenogenic tissues: a preliminary report on an experimental model. J Craniofac Surg. 2007;18:1451–1456.

    Article  PubMed  Google Scholar 

  16. Fox EJ, Hau MA, Gebhardt MC, Hornicek FJ, Tomford WW, Mankin HJ. Long-term followup of proximal femoral allografts. Clin Orthop Relat Res. 2002;397:106–113.

    Article  PubMed  Google Scholar 

  17. Gill DR, Ireland DC, Hurley JV, Morrison WA. The prefabrication of a bone graft in a rat model. J Hand Surg Am. 1998;23:312–321.

    Article  PubMed  CAS  Google Scholar 

  18. Graham SM, Leonidou A, Aslam-Pervez N, Hamza A, Panteliadis P, Heliotis M, Mantalaris A, Tsiridis E. Biological therapy of bone defects: the immunology of bone allo-transplantation. Expert Opin Biol Ther. 2010;10:885–901.

    Article  PubMed  CAS  Google Scholar 

  19. Hori Y, Tamai S, Okuda H, Sakamoto H, Takita T, Masuhara K. Blood vessel transplantation to bone. J Hand Surg Am. 1979;4:23–33.

    PubMed  CAS  Google Scholar 

  20. Hornicek FJ, Gebhardt MC, Tomford WW, Sorger JI, Zavatta M, Menzner JP, Mankin HJ. Factors affecting nonunion of the allograft-host junction. Clin Orthop Relat Res. 2001;382:87–98.

    Article  PubMed  Google Scholar 

  21. Jiang Y, Zhao J, Rosen C, Geusens P, Genant HK. Perspectives on bone mechanical properties and adaptive response to mechanical challenge. J Clin Densitom. 1999;2:423–433.

    Article  PubMed  CAS  Google Scholar 

  22. Kandel RA, Pritzker KP, Langer F, Gross AE. The pathologic features of massive osseous grafts. Hum Pathol. 1984;15:141–146.

    Article  PubMed  CAS  Google Scholar 

  23. Kasashima T, Minami A, Kato H, Kaneda K. Experimental study of vascularized bone grafts: hypertrophy of the grafted bone. J Reconstr Microsurg. 2000;16:121–128.

    Article  PubMed  CAS  Google Scholar 

  24. Khan SN, Cammisa FP Jr, Sandhu HS, Diwan AD, Girardi FP, Lane JM. The biology of bone grafting. J Am Acad Orthop Surg. 2005;13:77–86.

    PubMed  Google Scholar 

  25. Kleinheinz J, Stratmann U, Joos U, Wiesmann HP. VEGF-activated angiogenesis during bone regeneration. J Oral Maxillofac Surg. 2005;63:1310–1316.

    Article  PubMed  Google Scholar 

  26. Kneser U, Schaefer DJ, Polykandriotis E, Horch RE. Tissue engineering of bone: the reconstructive surgeon’s point of view. J Cell Mol Med. 2006;10:7–19.

    Article  PubMed  CAS  Google Scholar 

  27. Kumta S, Yip K, Roy N, Lee SK, Leung PC. Revascularisation of bone allografts following vascular bundle implantation: an experimental study in rats. Arch Orthop Trauma Surg. 1996;115:206–210.

    Article  PubMed  CAS  Google Scholar 

  28. Larsen M, Pelzer M, Friedrich PF, Bishop AT. Measurement of bone blood flow using the hydrogen washout technique. Part II. Validation by comparison to microsphere entrapment. J Orthop Res. 2008;26:746–752.

    Article  PubMed  Google Scholar 

  29. Larsen M, Willems WF, Pelzer M, Friedrich PF, Yaszemski MJ, Bishop AT. Augmentation of surgical angiogenesis in vascularized bone allotransplants with host-derived a/v bundle implantation, fibroblast growth factor-2, and vascular endothelial growth factor administration. J Orthop Res. 2010;28:1015–1021.

    PubMed  CAS  Google Scholar 

  30. Lopez-Curto JA, Bassingthwaighte JB, Kelly PJ. Anatomy of the microvasculature of the tibial diaphysis of the adult dog. J Bone Joint Surg Am. 1980;62:1362–1369.

    PubMed  CAS  Google Scholar 

  31. Mankin HJ, Gebhardt MC, Jennings LC, Springfield DS, Tomford WW. Long-term results of allograft replacement in the management of bone tumors. Clin Orthop Relat Res. 1996;324:86–97.

    Article  PubMed  Google Scholar 

  32. Mankin HJ, Hornicek FJ, Raskin KA. Infection in massive bone allografts. Clin Orthop Relat Res. 2005;432:210–216.

    Article  PubMed  Google Scholar 

  33. Matejovsky Z Jr, Matejovsky Z, Kofranek I. Massive allografts in tumour surgery. Int Orthop. 2006;30:478–483.

    Article  PubMed  Google Scholar 

  34. Nagi ON. Revascularization of diaphyseal bone segments by vascular bundle implantation. Clin Orthop Relat Res. 2005;440:233–241.

    Article  PubMed  CAS  Google Scholar 

  35. Pelzer M, Larsen M, Friedrich PF, Bishop AT. Measurement of bone blood flow using the hydrogen washout technique. Part I. Quantitative evaluation of tissue perfusion in the laboratory rat. J Orthop Res. 2008;26:741–745.

    Article  PubMed  Google Scholar 

  36. Phemister D. Changes in bones and joints resulting from interruption of circulation. Arch Surg. 1940;41:436–472.

    Article  Google Scholar 

  37. Polykandriotis E, Arkudas A, Beier JP, Hess A, Greil P, Papadopoulos T, Kopp J, Bach AD, Horch RE, Kneser U. Intrinsic axial vascularization of an osteoconductive bone matrix by means of an arteriovenous vascular bundle. Plast Reconstr Surg. 2007;120:855–868.

    Article  PubMed  CAS  Google Scholar 

  38. Safak T, Akyürek M, Ozcan G, Keçik A, Aydin M. Osteocutaneous flap prefabrication based on the principle of vascular induction: an experimental and clinical study. Plast Reconstr Surg. 2000;105:1304–1313.

    Article  PubMed  CAS  Google Scholar 

  39. San-Julian M, Cañadell J. Fractures of allografts used in limb preserving operations. Int Orthop. 1998;22:32–36.

    Article  PubMed  CAS  Google Scholar 

  40. Spalteholz K. Über das Durchsichtigmachen von menschlichen und tierischen Präparaten und seine theoretischen Bedingungen. Nebst Anhang: Über Knochenfärbung. Leipzig, Germany: S Hirzel; 1914.

  41. Stevenson S. Biology of bone grafts. Orthop Clin North Am. 1999;30:543–552.

    Article  PubMed  CAS  Google Scholar 

  42. Stevenson S, Emery SE, Goldberg VM. Factors affecting bone graft incorporation. Clin Orthop Relat Res. 1996;324:66–74.

    Article  PubMed  Google Scholar 

  43. Stevenson S, Li XQ, Davy DT, Klein L, Goldberg VM. Critical biological determinants of incorporation of non-vascularized cortical bone grafts: quantification of a complex process and structure. J Bone Joint Surg Am. 1997;79:1–16.

    Article  PubMed  CAS  Google Scholar 

  44. Stringa G. Studies of the vascularisation of bone grafts. J Bone Joint Surg Br. 1957;39:395–420.

    PubMed  Google Scholar 

  45. Tamai S. Experimental vascularized bone transplantations. Microsurgery. 1995;16:179–185.

    Article  PubMed  CAS  Google Scholar 

  46. Tamai S. Bone revascularization by vessel implantation for the treatment of Kienböck disease. Tech Hand Up Extrem Surg. 1999;3:154–161.

    Article  PubMed  CAS  Google Scholar 

  47. Tang P, Fischer CR. A new volar vascularization technique using the superficial palmar branch of the radial artery for the collapsed scaphoid nonunion. Tech Hand Up Extrem Surg. 2010;14:160–172.

    Article  PubMed  Google Scholar 

  48. Thompson RC Jr, Garg A, Clohisy DR, Cheng EY. Fractures in large-segment allografts. Clin Orthop Relat Res. 2000;370:227–235.

    Article  PubMed  Google Scholar 

  49. Thompson RC Jr, Pickvance EA, Garry D. Fractures in large segment allografts. J Bone Joint Surg Am. 1993;75:1663–1673.

    PubMed  Google Scholar 

  50. Top H, Aygit C, Sarikaya A, Cakir B, Cakir B, Unlu E. Bone flap prefabrication: an experimental study in rabbits. Ann Plast Surg. 2005;54:428–434.

    Article  PubMed  CAS  Google Scholar 

  51. Trueta J. The role of vessels in osteogenesis. J Bone Joint Surg Br. 1963;45:402–418.

    Google Scholar 

  52. Vander Griend RA. The effect of internal fixation on the healing of large allografts. J Bone Joint Surg Am. 1994;76:657–663.

    Google Scholar 

  53. Wheeler DL, Enneking WF. Allograft bone decreases in strength in vivo over time. Clin Orthop Relat Res. 2005;435:36–42.

    Article  PubMed  Google Scholar 

  54. Willems WF, Larsen M, Giusti G, Friedrich PF, Bishop AT. Revascularization and bone remodeling of frozen allografts stimulated by intramedullary sustained delivery of FGF-2 and VEGF. J Orthop Res. 2011;29:1431–1436.

    Article  PubMed  CAS  Google Scholar 

  55. Woodhouse CF. The transplantation of patent arteries to bone. J Int Coll Surg. 1963;39:437–446.

    PubMed  CAS  Google Scholar 

  56. Yao Y, Hua C, Tang X, Wang Y, Zhang F, Xiang Z. Angiogenesis and osteogenesis of non-vascularised autogenous bone graft with arterial pedicle implantation. J Plast Reconstr Aesthet Surg. 2010;63:467–473.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen T. Bishop MD.

Additional information

Each author certifies that he or she, or a member of his or her immediate family, has no commercial associations (eg, consultancies, stock ownership, equity interest, patent/licensing arrangements, etc) that might pose a conflict of interest in connection with the submitted article.

All ICMJE Conflict of Interest Forms for authors and Clinical Orthopaedics and Related Research editors and board members are on file with the publication and can be viewed on request.

Each author certifies that his or her institution approved the animal protocol for this investigation and that all investigations were conducted in conformity with ethical principles of research.

About this article

Cite this article

Willems, W.F., Kremer, T., Friedrich, P. et al. Surgical Revascularization Induces Angiogenesis in Orthotopic Bone Allograft. Clin Orthop Relat Res 470, 2496–2502 (2012). https://doi.org/10.1007/s11999-012-2442-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-012-2442-0

Keywords

Navigation