Skip to main content

Advertisement

Log in

Engineered Cartilage Maturation Regulates Cytokine Production and Interleukin-1β Response

  • Symposium: Clinically Relevant Strategies for Treating Cartilage and Meniscal Pathology
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Background

Because the injured joint has an actively inflammatory environment, the survival and repair potential of cartilage grafts may be influenced by inflammatory processes. Understanding the interactions of those processes with the graft may lead to concepts for pharmacologic or surgical solutions allowing improved cartilage repair.

Questions/purposes

We asked whether the maturation level of cartilaginous tissues generated in vitro by expanded human articular chondrocytes (HACs) modulate (1) the spontaneous production of cytokines and (2) the response to interleukin (IL)-1β.

Methods

Twelve pellets/donor prepared with monolayer-expanded HACs (n = 6 donors) were evaluated at six different culture times for mRNA expression (n = 72) and spontaneous baseline release of monocyte chemoattractant protein (MCP)-1, IL-8, and transforming growth factor (TGF)-β1 (n = 72). We cultured 24 pellets/donor from each of four donors for 1 or 14 days (defined as immature and mature, respectively) and exposed the pellets to IL-1β for 3 days. MCP-1, IL-8, TGF-β1, and metalloprotease (MMP)-1 and MMP-13 were quantified in pellets and culture supernatants.

Results

By increasing culture time, the spontaneous release of IL-8 and MCP-1 decreased (12.0- and 5.5-fold, respectively), whereas that of TGF-β1 increased (5.4-fold). As compared with immature pellets, mature pellets responded to IL-1β by releasing lower amounts of MMP-1 (2.9-fold) and MMP-13 (1.7-fold) and increased levels of IL-8, MCP-1, and TGF-β1 (1.5-, 5.0-, and 7.5-fold, respectively). IL-8 and MCP-1 promptly returned to baseline on withdrawal of IL-1β.

Conclusions

Our observations suggest more mature cartilaginous tissues are more resistant to IL-1β exposure and can activate chemokines required to initiate tissue repair processes.

Clinical Relevance

The implantation of more mature cartilaginous tissues might provide superior graft survival and improve/accelerate cartilage repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–L
Fig. 3A–J
Fig. 4A–B
Fig. 5A–F
Fig. 6A–H
Fig. 7A–C

Similar content being viewed by others

References

  1. Aulthouse AL, Beck M, Griffey E, Sanford J, Arden K, Machado MA, Horton WA. Expression of the human chondrocyte phenotype in vitro. In Vitro Cell Dev Biol. 1989;25:659–668.

    Article  PubMed  CAS  Google Scholar 

  2. Baici A, Lang A, Horler D, Knopfel M. Cathepsin B as a marker of the dedifferentiated chondrocyte phenotype. Ann Rheum Dis. 1988;47:684–691.

    Article  PubMed  CAS  Google Scholar 

  3. Barbero A, Grogan SP, Schaefer D, Heberer M, Mainil-Varlet P, Martin I. Age related changes in human articular chondrocyte yield, proliferation and post-expansion chondrogenic capacity. Osteoarthritis Cartilage. 2004;12:476–484.

    Article  PubMed  Google Scholar 

  4. Bedi A, Feeley BT, Williams RJ 3rd. Management of articular cartilage defects of the knee. J Bone Joint Surg Am. 2010;92:994–1009.

    Article  PubMed  Google Scholar 

  5. Behrens P, Bitter T, Kurz B, Russlies M. Matrix-associated autologous chondrocyte transplantation/implantation (MACT/MACI)—5-year follow-up. Knee. 2006;13:194–202.

    Article  PubMed  Google Scholar 

  6. Benya PD, Shaffer JD. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982;30:215–224.

    Article  PubMed  CAS  Google Scholar 

  7. Blanco FJ, Geng Y, Lotz M. Differentiation-dependent effects of IL-1 and TGF-beta on human articular chondrocyte proliferation are related to inducible nitric oxide synthase expression. J Immunol. 1995;154:4018–4026.

    PubMed  CAS  Google Scholar 

  8. Borzi RM, Mazzetti I, Cattini L, Uguccioni M, Maggiolini M, Facchini A. Human chondrocytes express functional chemokine receptors and release matrix-degrading enzymes in response to C-X-C and C-C chemokines. Arthritis Rheum. 2000;43:1734–1741.

    Article  PubMed  CAS  Google Scholar 

  9. Borzi RM, Mazzetti I, Macor S, Silvestri T, Bassi A, Cattini L, Facchini A. Flow cytometric analysis of intracellular chemokines in chondrocytes in vivo: constitutive expression and enhancement in osteoarthritis and rheumatoid arthritis. FEBS Lett. 1999;455:238–242.

    Article  PubMed  CAS  Google Scholar 

  10. Brittberg M. Autologous chondrocyte implantation—technique and long-term follow-up. Injury. 2008;39(Suppl 1):S40–S49.

    Article  PubMed  Google Scholar 

  11. Candrian C, Bonacina E, Frueh JA, VonWil D, Dickinson S, Wird D, Heberer M, Jakob M, Martin I, Barbero A. Intra-individual comparison of human ankle and knee chondrocytes in vitro: relevance for talar cartilage repair. Osteoarthritis Cartilage. 2009;17:489–496.

    Article  PubMed  CAS  Google Scholar 

  12. Darabos N, Hundric-Haspl Z, Haspl M, Markotic A, Darabos A, Moser C. Correlation between synovial fluid and serum IL-1beta levels after ACL surgery—preliminary report. Int Orthop. 2009;33:413–418.

    Article  PubMed  Google Scholar 

  13. De Ceuninck F, Dassencourt L, Anract P. The inflammatory side of human chondrocytes unveiled by antibody microarrays. Biochem Biophys Res Commun. 2004;323:960–969.

    Article  PubMed  Google Scholar 

  14. Dwyer RM, Potter-Beirne SM, Harrington KA, Lowery AJ, Hennessy E, Murphy JM, Barry FP, O’Brien T, Kerin M. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res. 2007;13:5020–5027.

    Article  PubMed  CAS  Google Scholar 

  15. Fan Z, Bau B, Yang H, Soeder S, Aigner T. Freshly isolated osteoarthritic chondrocytes are catabolically more active than normal chondrocytes, but less responsive to catabolic stimulation with interleukin-1beta. Arthritis Rheum. 2005;52:136–143.

    Article  PubMed  CAS  Google Scholar 

  16. Farndale RW, Buttle DJ, Barrett AJ. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta. 1986;883:173–177.

    PubMed  CAS  Google Scholar 

  17. Flannery CR, Little CB, Caterson B, Hughes CE. Effects of culture conditions and exposure to catabolic stimulators (IL-1 and retinoic acid) on the expression of matrix metalloproteinases (MMPs) and disintegrin metalloproteinases (ADAMs) by articular cartilage chondrocytes. Matrix Biol. 1999;18:225–237.

    Article  PubMed  CAS  Google Scholar 

  18. Goldberg AJ, Lee DA, Bader DL, Bentley G. Autologous chondrocyte implantation: culture in a TGF-beta-containing medium enhances the re-expression of a chondrocytic phenotype in passaged human chondrocytes in pellet culture. J Bone Joint Surg Br. 2005;87:128–134.

    Article  PubMed  CAS  Google Scholar 

  19. Goldring MB, Fukuo K, Birkhead JR, Dudek E, Sandell LJ. Transcriptional suppression by interleukin-1 and interferon-gamma of type II collagen gene expression in human chondrocytes. J Cell Biochem. 1994;54:85–99.

    Article  PubMed  CAS  Google Scholar 

  20. Grigolo B, De Franceschi L, Roseti L, Cattini L, Facchini A. Down regulation of degenerative cartilage molecules in chondrocytes grown on a hyaluronan-based scaffold. Biomaterials. 2005;26:5668–5676.

    Article  PubMed  CAS  Google Scholar 

  21. Grogan SP, Rieser F, Winkelmann V, Berardi S, Mainil-Varlet P. A static, closed and scaffold-free bioreactor system that permits chondrogenesis in vitro. Osteoarthritis Cartilage. 2003;11:403–411.

    Article  PubMed  CAS  Google Scholar 

  22. Handley CJ, Buttle DJ. Assay of proteoglycan degradation. Methods Enzymol. 1995;248:47–58.

    Article  PubMed  CAS  Google Scholar 

  23. Hedbom E, Häuselmann HJ. Molecular aspects of pathogenesis in osteoarthritis: the role of inflammation. Cell Mol Life Sci. 2002;59:45–53.

    Article  PubMed  CAS  Google Scholar 

  24. Jakob M, Demarteau O, Schaefer D, Hintermann B, Dick W, Heberer M, Martin I. Specific growth factors during the expansion and redifferentiation of adult human articular chondrocytes enhance chondrogenesis and cartilaginous tissue formation in vitro. J Cell Biochem. 2001;81:368–377.

    Article  PubMed  CAS  Google Scholar 

  25. Kozaci LD, Buttle DJ, Hollander AP. Degradation of type II collagen, but not proteoglycan, correlates with matrix metalloproteinase activity in cartilage explant cultures. Arthritis Rheum. 1997;40:164–174.

    Article  PubMed  CAS  Google Scholar 

  26. Lefebvre V, Peeters-Joris C, Vaes G. Modulation by interleukin 1 and tumor necrosis factor alpha of production of collagenase, tissue inhibitor of metalloproteinases and collagen types in differentiated and dedifferentiated articular chondrocytes. Biochim Biophys Acta. 1990;1052:366–378.

    Article  PubMed  CAS  Google Scholar 

  27. Lima EG, Tan AR, Tai T, Bian L, Stoker AM, Ateshiam GA, Cook JL, Hung CT. Differences in interleukin-1 response between engineered and native cartilage. Tissue Eng Part A. 2008;14:1721–1730.

    Article  PubMed  CAS  Google Scholar 

  28. Lotz M. Cytokines in cartilage injury and repair. Clin Orthop Relat Res. 2001;391(Suppl):S108–S115.

    Article  PubMed  Google Scholar 

  29. Lotz M, Terkeltaub R, Villiger PM. Cartilage and joint inflammation: regulation of IL-8 expression by human articular chondrocytes. J Immunol. 1992;148:466–473.

    PubMed  CAS  Google Scholar 

  30. Marcacci M, Berruto M, Brocchetta D, Delcogliano A, Ghinelli D, Gobbi A, Kon E, Pederzini L, Rosa D, Sacchetti GL, Zanasi S. Articular cartilage engineering with Hyalograft C: 3-year clinical results. Clin Orthop Relat Res. 2005;435:96–105.

    Article  PubMed  Google Scholar 

  31. Martel-Pelletier J, Boileau C, Pelletier JP, Roughley PJ. Cartilage in normal and osteoarthritis conditions. Best Pract Res Clin Rheumatol. 2008;22:351–384.

    Article  PubMed  CAS  Google Scholar 

  32. Mayne R, Vail MS, Mayne PM, Miller EJ. Changes in type of collagen synthesized as clones of chick chondrocytes grow and eventually lose division capacity. Proc Natl Acad Sci USA. 1976;73:1674–1678.

    Article  PubMed  CAS  Google Scholar 

  33. Mazzetti I, Magagnoli G, Paoletti S, Uguccioni M, Olivotto E, Vitellozzi R, Cattini L, Facchini A, Borzi RM. A role for chemokines in the induction of chondrocyte phenotype modulation. Arthritis Rheum. 2004;50:112–122.

    Article  PubMed  CAS  Google Scholar 

  34. Mishima Y, Lotz M. Chemotaxis of human articular chondrocytes and mesenchymal stem cells. J Orthop Res. 2008;26:1407–1412.

    Article  PubMed  Google Scholar 

  35. Nehrer S, Domayer S, Dorotka R, Schatz K, Bindreiter U, Kotz R. Three-year clinical outcome after chondrocyte transplantation using a hyaluronan matrix for cartilage repair. Eur J Radiol. 2006;57:3–8.

    Article  PubMed  CAS  Google Scholar 

  36. Pulsatelli L, Dolzani P, Piacentini A, Silvestri T, Ruggeri R, Gualtieri G, Meliconi R, Facchini A. Chemokine production by human chondrocytes. J Rheumatol. 1999;26:1992–2001.

    PubMed  CAS  Google Scholar 

  37. Ringe J, Strassburg S, Neumann K, Endres M, Notter M, Burmester GR, Kaps C, Sittinger M. Towards in situ tissue repair: human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2. J Cell Biochem. 2007;101:135–146.

    Article  PubMed  CAS  Google Scholar 

  38. Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 2000;132:365–386.

    PubMed  CAS  Google Scholar 

  39. Stokes DG, Liu G, Coimbra I, Piera-Valazquez S, Crowl RM, Jimenez SA. Assessment of the gene expression profile of differentiated and dedifferentiated human fetal chondrocytes by microarray analysis. Arthritis Rheum. 2002;46:404–419.

    Article  PubMed  CAS  Google Scholar 

  40. Stove J, Huch K, Gunther KP, Scharf HP. Interleukin-1beta induces different gene expression of stromelysin, aggrecan and tumor-necrosis-factor-stimulated gene 6 in human osteoarthritic chondrocytes in vitro. Pathobiology. 2000;68:144–149.

    Article  PubMed  CAS  Google Scholar 

  41. Stroebel S, Loparic M, Wendt D, Schenk AD, Candrian C, Linberg RL, Moldovan F, Barbero A, Martin I. Anabolic and catabolic response of human articular chondrocytes to varying oxygen percentages. Arthritis Res Ther. 2010;12:R34.

    Article  Google Scholar 

  42. Taskiran D, Stefanovic-Racic M, Georgescu H, Evans C. Nitric oxide mediates suppression of cartilage proteoglycan synthesis by interleukin-1. Biochem Biophys Res Commun. 1994;200:142–148.

    Article  PubMed  CAS  Google Scholar 

  43. Tetlow LC, Adlam DJ, Woolley DE. Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes. Arthritis Rheum. 2001;44:585–594.

    Article  PubMed  CAS  Google Scholar 

  44. Villiger PM, Terkeltaub R, Lotz M. Monocyte chemoattractant protein-1 (MCP-1) expression in human articular cartilage: induction by peptide regulatory factors and differential effects of dexamethasone and retinoic acid. J Clin Invest. 1992;90:488–496.

    Article  PubMed  CAS  Google Scholar 

  45. Watt FM. Effect of seeding density on stability of the differentiated phenotype of pig articular chondrocytes in culture. J Cell Sci. 1988;89:373-378.

    PubMed  Google Scholar 

  46. Wehling N, Palmer GD, Pilapil C, Liu F, Wells JW, Muller PE, Evans CH, Porter EM. Interleukin-1beta and tumor necrosis factor alpha inhibit chondrogenesis by human mesenchymal stem cells through NF-kappaB-dependent pathways. Arthritis Rheum. 2009;60:801–812.

    Article  PubMed  CAS  Google Scholar 

  47. Xu C, Oyajobi BO, Frazer A, Kozaci LD, Russel RG, Hollander AP. Effects of growth factors and interleukin-1 alpha on proteoglycan and type II collagen turnover in bovine nasal and articular chondrocyte pellet cultures. Endocrinology. 1996;137:3557–3565.

    Article  PubMed  CAS  Google Scholar 

  48. Yuan GH, Masuko-Hongo K, Sakata M, Tsuruha J, Onuma H, Nakamura H, Aoki H, Kato T, Nishioka K. The role of C-C chemokines and their receptors in osteoarthritis. Arthritis Rheum. 2001;44:1056–1070.

    Article  PubMed  CAS  Google Scholar 

  49. Zwicky R, Baici A. Cytoskeletal architecture and cathepsin B trafficking in human articular chondrocytes. Histochem Cell Biol. 2000;114:363–372.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Marcel Jakob for the procurement of cartilage samples. We are grateful to Mrs F. Wolf and Jennifer Frueh for their assistance with Luminex assay and to Dr. Sylvie Miot for her precious help in the culture of chondrocytes and in the biochemical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Martin PhD.

Additional information

One or more of the authors (IM) received funding from the Swiss National Science Foundation (Grant 3200B0-110054).

Each author certifies that his or her institution has approved the human protocol for this investigation, that all investigations were conducted in conformity with ethical principles of research, and informed consent for participation in the study was obtained.

About this article

Cite this article

Francioli, S., Cavallo, C., Grigolo, B. et al. Engineered Cartilage Maturation Regulates Cytokine Production and Interleukin-1β Response. Clin Orthop Relat Res 469, 2773–2784 (2011). https://doi.org/10.1007/s11999-011-1826-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-011-1826-x

Keywords

Navigation