Skip to main content
Log in

Trabecular Metal™ Cups for Acetabular Defects With 50% or Less Host Bone Contact

  • Symposium: Papers Presented at the Annual Closed Meeting of the International Hip Society
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Acetabular component revision in the context of large contained bone defects with less than 50% host bone contact traditionally have been treated with roof reinforcement or antiprotrusio cages. Trabecular Metal™ cups (Zimmer, Inc, Warsaw, IN) may offer a reasonable treatment alternative. We evaluated the clinical and radiographic outcome of this mode of treatment. We prospectively followed 53 hip revision acetabular arthroplasty procedures performed with Trabecular Metal™ cups for contained defects with 50% or less contact with native bone. All patients were clinically and radiographically evaluated for evidence of loosening or failure. Minimum followup was 24 months (average, 45 months; range, 24–71 months). Contact with host bone ranged from 0% to 50% (average, 19%). The mean postoperative Merle d’Aubigne-Postel score was 10.6 (range, 1–12), with a mean improvement of 5.2 (range, −4–10) compared to the preoperative score. Two failed cups (4%) were revised. Two additional cups (4%) had radiographic evidence of probable loosening. Complications included four dislocations and one sciatic nerve palsy. The data suggest treatment of cavitary defects with less than 50% host bone contact using Trabecular Metal™ cups, without structural support by augments or structural bone grafts, is a reasonable option.

Level of Evidence: Level IV, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–D
Fig. 3A–B

Similar content being viewed by others

References

  1. Berry DJ, Müller ME. Revision arthroplasty using an anti-protrusio cage for massive acetabular bone deficiency. J Bone Joint Surg Br. 1992;74:711–715.

    PubMed  CAS  Google Scholar 

  2. Bobyn JD, Stackpool GJ, Hacking SA, Tanzer M, Krygier JJ. Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J Bone Joint Surg Br. 1999;81:907–914.

    Article  PubMed  CAS  Google Scholar 

  3. Boscainos PJ, Kellett CF, Maury AC, Backstein D, Gross AE. Management of periacetabular bone loss in revision hip arthroplasty. Clin Orthop Relat Res. 2007;465:159–165.

    PubMed  Google Scholar 

  4. D’Antonio JA, Capello WN, Borden LS, Bargar WL, Bierbaum BF, Boettcher WG, Steinberg ME, Stulberg SD, Wedge JH. Classification and management of acetabular abnormalities in total hip arthroplasty. Clin Orthop Relat Res. 1989;243:126–137.

    PubMed  Google Scholar 

  5. DeLee JG, Charnley J. Radiological demarcation of cemented sockets in total hip replacement. Clin Orthop Relat Res. 1976;121:20–32.

    Google Scholar 

  6. Flecher X, Sporer S, Paprosky W. Management of severe bone loss in acetabular revision using a trabecular metal shell. J Arthroplasty. 2008;23:949–955.

    Article  PubMed  Google Scholar 

  7. Garcia-Cimbrelo E. Porous-coated cementless acetabular cups in revision surgery: a 6- to 11-year follow-up study. J Arthroplasty. 1999;14:397–406.

    Article  PubMed  CAS  Google Scholar 

  8. Goodman S, Pressman A, Saastamoinen H, Gross A. Modified sliding trochanteric osteotomy in revision total hip arthroplasty. J Arthroplasty. 2004;19:1039–1041.

    Article  PubMed  Google Scholar 

  9. Goodman S, Saastamoinen H, Shasha N, Gross A. Complications of ilioischial reconstruction rings in revision total hip arthroplasty. J Arthroplasty. 2004;19:436–446.

    Article  PubMed  Google Scholar 

  10. Gross AE. Restoration of acetabular bone loss 2005. J Arthroplasty. 2006;21(4 Suppl 1):117–120.

    Article  PubMed  Google Scholar 

  11. Gross AE, Goodman SB. Rebuilding the skeleton: the intraoperative use of trabecular metal in revision total hip arthroplasty. J Arthroplasty. 2005;20:91–93.

    Article  PubMed  Google Scholar 

  12. Gruen TA, Poggie RA, Lewallen DG, Hanssen AD, Lewis RJ, O’Keefe TJ, Stulberg SD, Sutherland CJ. Radiographic evaluation of a monoblock acetabular component: a multicenter study with 2- to 5-year results. J Arthroplasty. 2005;20:369–378.

    Article  PubMed  Google Scholar 

  13. Kim WY, Greidanus NV, Duncan CP, Masri BA, Garbuz DS. Porous tantalum uncemented acetabular shells in revision total hip replacement: two to four year clinical and radiographic results. Hip Int. 2008;18:17–22.

    PubMed  CAS  Google Scholar 

  14. Malizos KN, Bargiotas K, Papatheodorou L, Hantes M, Karachalios T. Survivorship of monoblock trabecular metal cups in primary THA: midterm results. Clin Orthop Relat Res. 2008;466:159–166.

    Article  PubMed  Google Scholar 

  15. McGann WA, Welch RB, Picetti GD 3rd. Acetabular preparation in cementless revision total hip arthroplasty. Clin Orthop Relat Res. 1988;235:35–46.

    PubMed  Google Scholar 

  16. Merle D’Aubigné R, Postel M. Functional results of hip arthroplasty with acrylic prosthesis. J Bone Joint Surg Am. 1954;36:451–475.

    Google Scholar 

  17. Saleh KJ, Holtzman J, Gafni A, Saleh L, Davis A, Resig S, Gross AE. Reliability and intraoperative validity of preoperative assessment of standardized plain radiographs in predicting bone loss at revision hip surgery. J Bone Joint Surg Am. 2001;83:1040–1046.

    PubMed  Google Scholar 

  18. Schmalzried TP, Harris WH. The Harris-Galante porous-coated acetabular component with screw fixation: radiographic analysis of eighty-three primary hip replacements at a minimum of five years. J Bone Joint Surg Am. 1992;74:1130–1139.

    PubMed  CAS  Google Scholar 

  19. Schreurs BW, Bolder SB, Gardeniers JW, Verdonschot N, Slooff TJ, Veth RP. Acetabular revision with impacted morsellised cancellous bone grafting and a cemented cup: a 15- to 20-year followup. J Bone Joint Surg Br. 2004;86:492–497.

    PubMed  CAS  Google Scholar 

  20. Sembrano JN, Cheng EY. Acetabular cage survival and analysis of factors related to failure. Clin Orthop Relat Res. 2008;466:1657–1665.

    Article  PubMed  Google Scholar 

  21. Siegmeth A, Duncan CP, Masri BA, Kim WY, Garbuz DS. Modular tantalum augments for acetabular defects in revision hip arthroplasty. Clin Orthop Relat Res. 2009;467:199–205.

    Article  PubMed  Google Scholar 

  22. Unger AS, Lewis RJ, Gruen T. Evaluation of a porous tantalum uncemented acetabular cup in revision total hip arthroplasty: clinical and radiological results of 60 hips. J Arthroplasty. 2005;20:1002–1009.

    Article  PubMed  Google Scholar 

  23. Zicat B, Engh CA, Gokcen E. Patterns of osteolysis around total hip components inserted with and without cement. J Bone Joint Surg Am. 1995;77:432–439.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dror Lakstein MD.

Additional information

Each author certifies that he or she has no commercial associations (eg, consultancies, stock ownership, equity interest, patent/licensing arrangements, etc) that might pose a conflict of interest in connection with the submitted article.

Each author certifies that his or her institution has approved the human protocol for this investigation and that all investigations were conducted in conformity with ethical principles of research, and that informed consent for participation in the study was obtained.

About this article

Cite this article

Lakstein, D., Backstein, D., Safir, O. et al. Trabecular Metal™ Cups for Acetabular Defects With 50% or Less Host Bone Contact. Clin Orthop Relat Res 467, 2318–2324 (2009). https://doi.org/10.1007/s11999-009-0772-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-009-0772-3

Keywords

Navigation