Skip to main content
Log in

Expression of Atrophy mRNA Relates to Tendon Tear Size in Supraspinatus Muscle

  • Original Article
  • Published:
Clinical Orthopaedics and Related Research

Abstract

Skeletal muscle atrophy and fatty infiltration develop after tendon tearing. The extent of atrophy serves as one prognostic factor for the outcome of surgical repair of rotator cuff tendon tears. We asked whether mRNA of genes involved in regulation of degradative processes leading to muscle atrophy, ie, FOXOs, MSTN, calpains, cathepsins, and transcripts of the ubiquitin-proteasome pathway, are overexpressed in the supraspinatus muscle in patients with and without rotator cuff tears. We evaluated biopsy specimens collected during surgery of 53 consecutive patients with different sizes of rotator cuff tendon tears and six without tears. The levels of corresponding gene transcripts in total RNA extracts were assessed by semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. Supraspinatus muscle atrophy was assessed by MRI. The area of muscle tissue (or atrophy), decreased (increased) with increasing tendon tear size. The transcripts of CAPN1, UBE2B, and UBE3A were upregulated more than twofold in massive rotator cuff tears as opposed to smaller tears or patients without tears. These atrophy gene products may be involved in cellular processes that impair functional recovery of affected muscles after surgical rotator cuff repair. However, the damaging effects of gene products in their respective proteolytic processes on muscle structures and proteins remains to be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–B

Similar content being viewed by others

References

  1. Bartoli M, Richard I. Calpains in muscle wasting. Int J Biochem Cell Biol. 2005;37:2115–2133.

    Article  PubMed  CAS  Google Scholar 

  2. Barton ER, Gimbel JA, Williams GR, Soslowsky LJ. Rat supraspinatus muscle atrophy after tendon detachment. J Orthop Res. 2005;23:259–265.

    Article  PubMed  Google Scholar 

  3. Bechet D, Tassa A, Taillandier D, Combaret L, Attaix D. Lysosomal proteolysis in skeletal muscle. Int J Biochem Cell Biol. 2005;37:2098–2114.

    Article  PubMed  CAS  Google Scholar 

  4. Bjorkenheim JM. Structure and function of the rabbit’s supraspinatus muscle after resection of its tendon. Acta Orthop Scand. 1989;60:461–463.

    PubMed  CAS  Google Scholar 

  5. Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001;294:1704–1708.

    Article  PubMed  CAS  Google Scholar 

  6. Clavel S, Coldefy AS, Kurkdjian E, Salles J, Margaritis I, Derijard B. Atrophy-related ubiquitin ligases, atrogin-1 and MuRF1 are up-regulated in aged rat tibialis anterior muscle. Mech Ageing Dev. 2006;127:794–801.

    Article  PubMed  CAS  Google Scholar 

  7. Constant CR, Murley AH. A clinical method of functional assessment of the shoulder. Clin Orthop Relat Res. 1987;214:160–164.

    PubMed  Google Scholar 

  8. Dheda K, Huggett JF, Bustin SA, Johnson MA, Rook G, Zumla A. Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques. 2004;37:112–114, 116, 118–119.

    Google Scholar 

  9. Duguez S, Bartoli M, Richard I. Calpain 3: a key regulator of the sarcomere? FEBS J. 2006;273:3427–3436.

    Article  PubMed  CAS  Google Scholar 

  10. Fuchs B, Weishaupt D, Zanetti M, Hodler J, Gerber C. Fatty degeneration of the muscles of the rotator cuff: assessment by computed tomography versus magnetic resonance imaging. J Shoulder Elbow Surg. 1999;8:599–605.

    Article  PubMed  CAS  Google Scholar 

  11. Fuchs B, Zumstein M, Regenfelder F, Steinmann P, Fuchs T, Husmann K, Hellermann J, Jost B, Hodler J, Born W, Gerber C. Upregulation of alpha-skeletal muscle actin and myosin heavy polypeptide gene products in degenerating rotator cuff muscles. J Orthop Res. 2008;26:1007–1011.

    Article  PubMed  CAS  Google Scholar 

  12. Gazielly DF, Gleyze P, Montagnon C. Functional and anatomical results after rotator cuff repair. Clin Orthop Relat Res. 1994;304:43–53.

    PubMed  Google Scholar 

  13. Gerber C, Fuchs B, Hodler J. The results of repair of massive tears of the rotator cuff. J Bone Joint Surg Am. 2000;82:505–515.

    PubMed  CAS  Google Scholar 

  14. Gerber C, Meyer DC, Schneeberger AG, Hoppeler H, von Rechenberg B. Effect of tendon release and delayed repair on the structure of the muscles of the rotator cuff: an experimental study in sheep. J Bone Joint Surg Am. 2004;86:1973–1982.

    Article  PubMed  Google Scholar 

  15. Giresi PG, Stevenson EJ, Theilhaber J, Koncarevic A, Parkington J, Fielding RA, Kandarian SC. Identification of a molecular signature of sarcopenia. Physiol Genomics. 2005;21:253–263.

    Article  PubMed  CAS  Google Scholar 

  16. Goldspink DF, Morton AJ, Loughna P, Goldspink G. The effect of hypokinesia and hypodynamia on protein turnover and the growth of four skeletal muscles of the rat. Pflugers Arch. 1986;407:333–340.

    Article  PubMed  CAS  Google Scholar 

  17. Goutallier D, Postel JM, Bernageau J, Lavau L, Voisin MC. Fatty muscle degeneration in cuff ruptures: pre- and postoperative evaluation by CT scan. Clin Orthop Relat Res. 1994;304:78–83.

    PubMed  Google Scholar 

  18. Goutallier D, Postel JM, Lavau L, Bernageau J. [Impact of fatty degeneration of the suparspinatus and infraspinatus muscles on the prognosis of surgical repair of the rotator cuff][in French]. Rev Chir Orthop Reparatrice Appar Mot. 1999;85:668–676.

    PubMed  CAS  Google Scholar 

  19. Graebe A, Schuck EL, Lensing P, Putcha L, Derendorf H. Physiological, pharmacokinetic, and pharmacodynamic changes in space. J Clin Pharmacol. 2004;44:837–853.

    Article  PubMed  CAS  Google Scholar 

  20. Huang J, Forsberg NE. Role of calpain in skeletal-muscle protein degradation. Proc Natl Acad Sci USA. 1998;95:12100–12105.

    Article  PubMed  CAS  Google Scholar 

  21. Jackman RW, Kandarian SC. The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol. 2004;287:C834–C843.

    Article  PubMed  CAS  Google Scholar 

  22. Kandarian SC, Jackman RW. Intracellular signaling during skeletal muscle atrophy. Muscle Nerve. 2006;33:155–165.

    Article  PubMed  CAS  Google Scholar 

  23. Loughna P, Goldspink G, Goldspink DF. Effect of inactivity and passive stretch on protein turnover in phasic and postural rat muscles. J Appl Physiol. 1986;61:173–179.

    PubMed  CAS  Google Scholar 

  24. Matsukura U, Okitani A, Nishimuro T, Kato H. Mode of degradation of myofibrillar proteins by an endogenous protease, cathepsin L. Biochim Biophys Acta. 1981;662:41–47.

    PubMed  CAS  Google Scholar 

  25. Meyer DC, Pirkl C, Pfirrmann CW, Zanetti M, Gerber C. Asymmetric atrophy of the supraspinatus muscle following tendon tear. J Orthop Res. 2005;23:254–258.

    Article  PubMed  Google Scholar 

  26. Nakagaki K, Ozaki J, Tomita Y, Tamai S. Fatty degeneration in the supraspinatus muscle after rotator cuff tear. J Shoulder Elbow Surg. 1996;5:194–200.

    Article  PubMed  CAS  Google Scholar 

  27. Noda T, Isogai K, Hayashi H, Katunuma N. Susceptibilities of various myofibrillar proteins to cathepsin B and morphological alteration of isolated myofibrils by this enzyme. J Biochem (Tokyo). 1981;90:371–379.

    CAS  Google Scholar 

  28. Purintrapiban J, Wang MC, Forsberg NE. Degradation of sarcomeric and cytoskeletal proteins in cultured skeletal muscle cells. Comp Biochem Physiol B Biochem Mol Biol. 2003;136:393–401.

    Article  PubMed  CAS  Google Scholar 

  29. Rittweger J, Frost HM, Schiessl H, Ohshima H, Alkner B, Tesch P, Felsenberg D. Muscle atrophy and bone loss after 90 days’ bed rest and the effects of flywheel resistive exercise and pamidronate: results from the LTBR study. Bone. 2005;36:1019–1029.

    Article  PubMed  Google Scholar 

  30. Sacheck JM, Hyatt JP, Raffaello A, Jagoe RT, Roy RR, Edgerton VR, Lecker SH, Goldberg AL. Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases. FASEB J. 2007;21:140–155.

    Article  PubMed  CAS  Google Scholar 

  31. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell. 2004;117:399–412.

    Article  PubMed  CAS  Google Scholar 

  32. Schwartz W, Bird JW. Degradation of myofibrillar proteins by cathepsins B and D. Biochem J. 1977;167:811–820.

    PubMed  CAS  Google Scholar 

  33. Thomazeau H, Boukobza E, Morcet N, Chaperon J, Langlais F. Prediction of rotator cuff repair results by magnetic resonance imaging. Clin Orthop Relat Res. 1997;344:275–283.

    Article  PubMed  Google Scholar 

  34. Thomazeau H, Rolland Y, Lucas C, Duval JM, Langlais F. Atrophy of the supraspinatus belly: assessment by MRI in 55 patients with rotator cuff pathology. Acta Orthop Scand. 1996;67:264–268.

    Article  PubMed  CAS  Google Scholar 

  35. Tran H, Brunet A, Griffith EC, Greenberg ME. The many forks in FOXO’s road. Sci STKE. 2003;2003:RE5.

  36. Tyml K, Mathieu-Costello O. Structural and functional changes in the microvasculature of disused skeletal muscle. Front Biosci. 2001;6:D45–D52.

    Article  PubMed  CAS  Google Scholar 

  37. Tyml K, Mathieu-Costello O, Cheng L, Noble EG. Differential microvascular response to disuse in rat hindlimb skeletal muscles. J Appl Physiol. 1999;87:1496–1505.

    PubMed  CAS  Google Scholar 

  38. Ventadour S, Attaix D. Mechanisms of skeletal muscle atrophy. Curr Opin Rheumatol. 2006;18:631–635.

    Article  PubMed  CAS  Google Scholar 

  39. Welle S, Brooks AI, Delehanty JM, Needler N, Thornton CA. Gene expression profile of aging in human muscle. Physiol Genomics. 2003;14:149–159.

    PubMed  CAS  Google Scholar 

  40. Wittwer M, Fluck M, Hoppeler H, Muller S, Desplanches D, Billeter R. Prolonged unloading of rat soleus muscle causes distinct adaptations of the gene profile. FASEB J. 2002;16:884–886.

    PubMed  CAS  Google Scholar 

  41. Xiao YY, Wang MC, Purintrapiban J, Forsberg NE. Roles of mu-calpain in cultured L8 muscle cells: application of a skeletal muscle-specific gene expression system. Comp Biochem Physiol C Toxicol Pharmacol. 2003;134:439–450.

    Article  PubMed  CAS  Google Scholar 

  42. Zanetti M, Gerber C, Hodler J. Quantitative assessment of the muscles of the rotator cuff with magnetic resonance imaging. Invest Radiol. 1998;33:163–170.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Walter Born, PhD, for helpful advice on the manuscript and Christian Gerber, MD, for helping to recruit the patients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Fuchs MD, PhD.

Additional information

One or more of the authors (CG, BF) have received funding from the Swiss National Science Foundation (SNF #320000-113424).

Each author certifies that his or her institution has approved the human protocol for this investigation, that all investigations were conducted in conformity with ethical principles of research, and that informed consent for participation in the study was obtained.

About this article

Cite this article

Schmutz, S., Fuchs, T., Regenfelder, F. et al. Expression of Atrophy mRNA Relates to Tendon Tear Size in Supraspinatus Muscle. Clin Orthop Relat Res 467, 457–464 (2009). https://doi.org/10.1007/s11999-008-0565-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-008-0565-0

Keywords

Navigation