Skip to main content
Log in

Lack of Axial Rotation in Mobile-bearing Knee Designs

  • Symposium: Papers Presented at the Annual Meetings of the Knee Society
  • Published:
Clinical Orthopaedics and Related Research

Abstract

It has often been assumed rotational kinematics are improved with mobile-bearing TKA designs as the terms mobile-bearing and rotating platform imply. We tested this assumption by assessing the in vivo axial rotation magnitudes and patterns of 527 knees implanted with 12 different mobile-bearing TKA designs. Implants were grouped and compared by type—posterior stabilized (PS), posterior cruciate retaining (PCR), and posterior cruciate sacrificing (PCS)—and by specific design. We hypothesized all three mobile-bearing types (PS, PCR, and PCS) would achieve greater than 10° average axial rotation and we would find no differences in axial rotation between types. Only 14% of PS knees, 3% of PCS knees, and 17% of PCR knees attained greater than 10° axial rotation when measured from 0° to 90°. The percentage of PCS knees with greater than 10° axial rotation was less compared with the other two groups. Axial rotation averaged 4.3°, 2.5°, and 3.8° for the PS, PCS, and PCR knees, respectively. Incidences of reverse rotation were observed in 17% of PS knees, 32% of PCS knees, and 28% of PCR knees. Compared with the PCS group, the PS group achieved greater average axial rotation and had a lower percentage of knees displaying incidences of reverse rotation. The data refuted the hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Asano T, Akagi M, Tanaka K, Tamura J, Nakamura T. In vivo three-dimensional knee kinematics using a biplanar image-matching technique. Clin Orthop Relat Res. 2001;388:157–166.

    Article  PubMed  Google Scholar 

  2. Banks SA, Hodge WA. Implant design affects knee arthroplasty kinematics during stair-stepping. Clin Orthop Relat Res. 2004;426:187–193.

    Article  PubMed  Google Scholar 

  3. Delport HP, Banks SA, De Schepper J, Bellemans J. A kinematic comparison of fixed- and mobile-bearing knee replacements. J Bone Joint Surg Br. 2006;88:1016–1021.

    Article  PubMed  CAS  Google Scholar 

  4. Dennis DA, Komistek RD, Hoff WA, Gabriel SM. In vivo knee kinematics derived using an inverse perspective technique. Clin Orthop Relat Res. 1996;331:107–117.

    Article  PubMed  Google Scholar 

  5. Dennis DA, Komistek RD, Mahfouz MR. In vivo fluoroscopic analysis of fixed-bearing total knee replacements. Clin Orthop Relat Res. 2003;410:114–130.

    Article  PubMed  Google Scholar 

  6. Dennis DA, Komistek RD, Mahfouz MR, Haas BD, Stiehl JB. Multicenter determination of in vivo kinematics after total knee arthroplasty. Clin Orthop Relat Res. 2003;416:37–57.

    Article  PubMed  Google Scholar 

  7. Dennis DA, Komistek RD, Mahfouz MR, Outten JT, Sharma A. Mobile-bearing total knee arthroplasty: do the polyethylene bearings rotate? Clin Orthop Relat Res. 2005;440:88–95.

    Article  PubMed  Google Scholar 

  8. Dennis DA, Komistek RD, Mahfouz MR, Walker SA, Tucker A. A multicenter analysis of axial femorotibial rotation after total knee arthroplasty. Clin Orthop Relat Res. 2004;428:180–189.

    Article  PubMed  Google Scholar 

  9. Dennis DA, Mahfouz MR, Komistek RD, Hoff W. In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics. J Biomech. 2005;38:241–253.

    Article  PubMed  Google Scholar 

  10. D’Lima DD, Trice M, Urquhart AG, Colwell CW Jr. Comparison between the kinematics of fixed and rotating bearing knee prostheses. Clin Orthop Relat Res. 2000;380:151–157.

    Article  PubMed  Google Scholar 

  11. Elias JJ, Kumagai M, Mitchell I, Mizuno Y, Mattessich SM, Webb JD, Chao EY. In vitro kinematic patterns are similar for a fixed platform and a mobile-bearing prosthesis. J Arthroplasty. 2002;17:467–474.

    Article  PubMed  Google Scholar 

  12. Komistek RD, Dennis DA, Mahfouz M. In vivo fluoroscopic analysis of the normal human knee. Clin Orthop Relat Res. 2003;410:69–81.

    Article  PubMed  Google Scholar 

  13. Mahfouz MR, Hoff WA, Komistek RD, Dennis DA. A robust method for registration of three-dimensional knee implant models to two-dimensional fluoroscopy images. IEEE Trans Med Imaging. 2003;22:1561–1574.

    Article  PubMed  Google Scholar 

  14. Mahfouz MR, Komistek RD, Dennis DA, Hoff WA. In vivo assessment of the kinematics in normal and anterior cruciate ligament-deficient knees. J Bone Joint Surg Am. 2004;86(Suppl 2):56–61.

    PubMed  Google Scholar 

  15. Most E, Li G, Schule S, Sultan P, Park SE, Zayontz S, Rubash HE. The kinematics of fixed- and mobile-bearing total knee arthroplasty. Clin Orthop Relat Res. 2003;416:197–207.

    Article  PubMed  Google Scholar 

  16. Nilsson KG, Karrholm J, Gadegaard P. Abnormal kinematics of the artificial knee. Roentgen stereophotogrammetric analysis of 10 Miller-Galante and five New Jersey LCS knees. Acta Orthop Scand. 1991;62:440–446.

    Article  PubMed  CAS  Google Scholar 

  17. Oakeshott R, Stiehl JB, Komistek RA, Anderson DT, Haas BD. Kinematic analysis of a posterior cruciate retaining mobile-bearing total knee arthroplasty. J Arthroplasty. 2003;18:1029–1037.

    Article  PubMed  Google Scholar 

  18. Ranawat CS, Komistek RD, Rodriguez JA, Dennis DA, Anderle M. In vivo kinematics for fixed and mobile-bearing posterior stabilized knee prostheses. Clin Orthop Relat Res. 2004;418:184–190.

    Article  PubMed  Google Scholar 

  19. Russo A, Montagna L, Bragonzoni L, Visani A, Marcacci M. Changes in knee motion over the first 3 years with a mobile-bearing prosthesis. Knee. 2006;13:301–306.

    Article  PubMed  Google Scholar 

  20. Saari T, Uvehammer J, Carlsson LV, Herberts P, Regner L, Karrholm J. Kinematics of three variations of the Freeman-Samuelson total knee prosthesis. Clin Orthop Relat Res. 2003;410:235–247.

    Article  PubMed  Google Scholar 

  21. Stiehl JB, Dennis DA, Komistek RD, Keblish PA. In vivo kinematic analysis of a mobile-bearing total knee prosthesis. Clin Orthop Relat Res. 1997;345:60–66.

    Article  PubMed  Google Scholar 

  22. Sugita T, Sato K, Komistek RD, Mahfouz MR, Maeda I, Sano T. In vivo determination of knee kinematics for Japanese subjects having either a low contact stress rotating platform or an anteroposterior glide total knee arthroplasty. J Arthroplasty. 2005;20:154–161.

    Article  PubMed  Google Scholar 

  23. Wasielewski RC, Galat DD, Komistek RD. An intraoperative pressure-measuring device used in total knee arthroplasties and its kinematic correlations. Clin Orthop Relat Res. 2004;427:171–178.

    Article  PubMed  Google Scholar 

  24. Watanabe T, Yamazaki T, Sugamoto K, Tomita T, Hashimoto H, Maeda D, Tamura S, Ochi T, Yoshikawa H. In vivo kinematics of mobile-bearing knee arthroplasty in deep knee bending motion. J Orthop Res. 2004;22:1044–1049.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray C. Wasielewski MD, MS.

Additional information

Each author certifies that he or she has no commercial associations (eg, consultancies, stock ownership, equity interest, patent/licensing arrangements, etc) that might pose a conflict of interest in connection with the submitted article.

About this article

Cite this article

Wasielewski, R.C., Komistek, R.D., Zingde, S.M. et al. Lack of Axial Rotation in Mobile-bearing Knee Designs. Clin Orthop Relat Res 466, 2662–2668 (2008). https://doi.org/10.1007/s11999-008-0354-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-008-0354-9

Keywords

Navigation