Skip to main content

Advertisement

Log in

Pause Insertions During Cyclic In Vivo Loading Affect Bone Healing

  • Original Article
  • Trauma or Fracture
  • Published:
Clinical Orthopaedics and Related Research

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Fracture repair is influenced by the mechanical environment, particularly when cyclic loads are applied across the fracture site. However, the specific mechanical loading parameters that accelerate fracture healing are unknown. Intact bone adaptation studies show enhanced bone formation with pauses inserted between loading cycles. We hypothesized pause-inserted noninvasive external loading to mouse tibial fractures would lead to accelerated healing. Eighty mice underwent tibial osteotomies with intramedullary stabilization and were divided into four loading protocol groups: (1) repetitive loading (100 cycles, 1 Hz); (2) pause/time-equivalent (10 cycles, 0.1 Hz); (3) pause/cycle-equivalent (100 cycles, 0.1 Hz); and (4) no load control. Loading was applied daily for 2 weeks. Healing was assessed using histology, biomechanical bending tests, and microcomputed tomography. The pause-inserted, cycle-equivalent group had a greater percentage of osteoid present in the callus cross-sectional area compared with no-load controls, indicating more advanced early healing. The pause-inserted, cycle-equivalent group had a failure moment and stiffness that were 37% and 31% higher than the controls, respectively. All three loaded groups had smaller overall mineralized callus volumes than the control group, also indicating more advanced healing. At an early stage of fracture healing, pause-inserted loading led to more histologically advanced healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3A–B
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aro HT, Chao EY. Bone-healing patterns affected by loading, fracture fragment stability, fracture type, and fracture site compression. Clin Orthop Relat Res. 1993;293:8–17.

    PubMed  Google Scholar 

  2. Carter DR, Blenman PR, Beaupre GS. Correlations between mechanical stress history and tissue differentiation in initial fracture healing. J Orthop Res. 1988;6:736–748.

    Article  PubMed  CAS  Google Scholar 

  3. Chao EYS, Inoue N, Elias JJ, Aro H. Enhancement of fracture healing by mechanical and surgical intervention. Clin Orthop Relat Res. 1998;355(suppl):S163–178.

    Article  PubMed  Google Scholar 

  4. Cheung KM, Kaluarachi K, Andrew G, Lu W, Chan D, Cheah KS. An externally fixed femoral fracture model for mice. J Orthop Res. 2003;21:685–690.

    Article  PubMed  Google Scholar 

  5. Chow JW, Jagger CJ, Chambers TJ Characterization of osteogenic response to mechanical stimulation in cancellous bone of rat caudal vertebrae. Am J Physiol. 1993;265:E340–347.

    PubMed  CAS  Google Scholar 

  6. Claes LE, Heigele CA. Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J Biomech. 1999;32:255–266.

    Article  PubMed  CAS  Google Scholar 

  7. Claes LE, Heigele CA, Neidlinger-Wilke C, Kaspar D, Seidl W, Margevicius KJ, Augat P. Effects of mechanical factors on the fracture healing process. Clin Orthop Relat Res. 1998;355(suppl):S132–147.

    Article  PubMed  Google Scholar 

  8. Claes LE, Wilke HJ, Augat P, Rubenacker S, Margevicius KJ. Effect of dynamization on gap healing of diaphyseal fractures under external fixation. Clin Biomech (Bristol, Avon). 1995;10:227–234.

    Article  Google Scholar 

  9. Connelly JT, Fritton JC, van der Meulen MCH. Simulation of in vivo loading in the tibia of the C57BL/6 mouse. Trans Orthop Res Soc. 2003;28:0409.

    Google Scholar 

  10. Cullen DM, Smith RT, Akhter MP. Bone-loading response varies with strain magnitude and cycle number. J Appl Physiol. 2001;91:1971–1976.

    PubMed  CAS  Google Scholar 

  11. Duda GN, Sollmann M, Sporrer S, Hoffmann JE, Kassi JP, Khodadadyan C, Raschle M. Interfragmentary motion in tibial osteotomies stabilized with ring fixators. Clin Orthop Relat Res. 2002;396:163–172.

    Article  PubMed  Google Scholar 

  12. Egger EL, Gottsauner-Wolf F, Palmer J, Aro HT, Chao EY. Effects of axial dynamization on bone healing. J Trauma. 1993;34:185–192.

    Article  PubMed  CAS  Google Scholar 

  13. Ehrlich PJ, Lanyon LE. Mechanical strain and bone cell function: a review. Osteoporos Int. 2002;13:688–700.

    Article  PubMed  CAS  Google Scholar 

  14. Erben RG. Embedding of bone samples in methylmethacrylate: an improved method suitable for bone histomorphometry, histochemistry, and immunohistochemistry. J Histochem Cytochem. 1997;45:307–313.

    PubMed  CAS  Google Scholar 

  15. Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M. The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res. 1989;4:3–11.

    Article  PubMed  CAS  Google Scholar 

  16. Forwood MR, Turner CH. The response of rat tibiae to incremental bouts of mechanical loading: a quantum concept for bone formation. Bone. 1994;15:603–609.

    Article  PubMed  CAS  Google Scholar 

  17. Fritton JC, Myers ER, Wright TM, van der Meulen MC. Loading induces site-specific increases in mineral content assessed by microcomputed tomography of the mouse tibia. Bone. 2005;36:1030–1038.

    Article  PubMed  CAS  Google Scholar 

  18. Gardner MJ, van der Meulen MC, Demetrakopoulos D, Wright TM, Myers ER, Bostrom MP. In vivo cyclic axial compression affects bone healing in the mouse tibia. J Orthop Res. 2006;24:1679–1686.

    Article  PubMed  Google Scholar 

  19. Goodship AE, Cunningham JL, Kenwright J. Strain rate and timing of stimulation in mechanical modulation of fracture healing. Clin Orthop Relat Res. 1998;355(suppl):S105–115.

    Article  PubMed  Google Scholar 

  20. Goodship AE, Kenwright J. The influence of induced micromovement upon the healing of experimental tibial fractures. J Bone Joint Surg Br. 1985;67:650–655.

    PubMed  CAS  Google Scholar 

  21. Hiltunen A, Aro HT, Vuorio E. Regulation of extracellular matrix genes during fracture healing in mice. Clin Orthop Relat Res. 1993;297:23–27.

    PubMed  Google Scholar 

  22. Kenwright J, Richardson JB, Cunningham JL, White SH, Goodship AE, Adams MA, Magnussen PA, Newman JH. Axial movement and tibial fractures: a controlled randomised trial of treatment. J Bone Joint Surg Br. 1991;73:654–659.

    PubMed  CAS  Google Scholar 

  23. LaMothe JM, Zernicke RF. Rest insertion combined with high-frequency loading enhances osteogenesis. J Appl Physiol. 2004;96:1788–1793.

    Article  PubMed  Google Scholar 

  24. Lanyon LE, Rubin CT. Static vs dynamic loads as an influence on bone remodelling. J Biomech. 1984;17:897–905.

    Article  PubMed  CAS  Google Scholar 

  25. Parker DL. Optimal short scan convolution reconstruction for fanbeam CT. Med Phys. 1982;9:254–257.

    Article  PubMed  CAS  Google Scholar 

  26. Robling AG, Burr DB, Turner CH. Recovery periods restore mechanosensitivity to dynamically loaded bone. J Exp Biol. 2001;204:3389–3399.

    PubMed  CAS  Google Scholar 

  27. Robling AG, Hinant FM, Burr DB, Turner CH. Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J Bone Miner Res. 2002;17:1545–1554.

    Article  PubMed  Google Scholar 

  28. Robling AG, Hinant FM, Burr DB, Turner CH. Shorter, more frequent mechanical loading sessions enhance bone mass. Med Sci Sports Exerc. 2002;34:196–202.

    Article  PubMed  Google Scholar 

  29. Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am. 1984;66:397–402.

    PubMed  CAS  Google Scholar 

  30. Sarmiento A, Schaeffer JF, Beckerman L, Latta LL, Enis JE. Fracture healing in rat femora as affected by functional weight-bearing. J Bone Joint Surg Am. 1977;59:369–375.

    PubMed  CAS  Google Scholar 

  31. Srinivasan S, Weimer DA, Agans SC, Bain SD, Gross TS. Low-magnitude mechanical loading becomes osteogenic when rest is inserted between each load cycle. J Bone Miner Res. 2002;17:1613–1620.

    Article  PubMed  Google Scholar 

  32. Turner CH. Three rules for bone adaptation to mechanical stimuli. Bone. 1998;23:399–407.

    Article  PubMed  CAS  Google Scholar 

  33. Umemura Y, Ishiko T, Yamauchi T, Kurono M, Mashiko S. Five jumps per day increase bone mass and breaking force in rats. J Bone Miner Res. 1997;12:1480–1485.

    Article  PubMed  CAS  Google Scholar 

  34. Wallace AL, Draper ER, Strachan RK, McCarthy ID, Hughes SP. The vascular response to fracture micromovement. Clin Orthop Relat Res. 1994;301:281–290.

    PubMed  Google Scholar 

  35. White AA 3rd, Panjabi MM, Southwick WO. Effects of compression and cyclical loading on fracture healing: a quantitative biomechanical study. J Biomech. 1977;10:233–239.

    Article  PubMed  Google Scholar 

  36. Wolf S, Janousek A, Pfeil J, Veith W, Haas F, Duda G, Claes L. The effects of external mechanical stimulation on the healing of diaphyseal osteotomies fixed by flexible external fixation. Clin Biomech (Bristol, Avon). 1998;13:359–364.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Jonathan Zelken, Alexia Hernandez, and Xu Yang for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Gardner MD.

Additional information

One or more of the authors have received funding from the Orthopaedic Trauma Association (MJG), the Orthopaedic Research and Education Foundation (MJG), and NIH Musculoskeletal Core Center P30AR046121 (TMW, MCHvdM).

Each author certifies that his or her institution has approved the animal protocol for this investigation and that all investigations were conducted in conformity with ethical principles of research.

About this article

Cite this article

Gardner, M.J., Ricciardi, B.F., Wright, T.M. et al. Pause Insertions During Cyclic In Vivo Loading Affect Bone Healing . Clin Orthop Relat Res 466, 1232–1238 (2008). https://doi.org/10.1007/s11999-008-0155-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-008-0155-1

Keywords

Navigation