Skip to main content
Log in

Intumescent coatings using epoxy, alkyd, acrylic, silicone, and silicone–epoxy hybrid resins for steel fire protection

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Intumescent coatings are a great alternative for passive protection of metal substrates against fire, with binder polymer being one of the main components of an intumescent system. The objective of this work was to compare five different resin types (epoxy, acrylic, alkyd, silicone, and silicone–epoxy hybrid) in an intumescent formulation and to study the influence of resin concentration on the fire protection performance of the coating. Results from TGA and MCC analysis of resins and coatings indicated that coatings containing silicone are thermally stable and release smaller amounts of heat. In the fire resistance test, samples containing epoxy and silicone resins had lower temperatures (130–160°C) compared to the other samples. It has also been found that it is possible to decrease resin concentration in formulations containing epoxy and silicone resins up to 25.6% and to maintain or even improve their fire protection capability.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. de Sá, SC, de Souza, MM, Peres, RS, Zmozinski, AV, Braga, RM, de Araújo Melo, DM, Ferreira, CA, “Environmentally Friendly Intumescent Coatings Formulated with Vegetable Compounds.” Prog. Org. Coat., 113 47–59 (2017). https://doi.org/10.1016/j.porgcoat.2017.08.007

    Article  CAS  Google Scholar 

  2. Fan, F, Xia, Z, Li, Q, Li, Z, “Effects of Inorganic Fillers on the Shear Viscosity and Fire Retardant Performance of Waterborne Intumescent Coatings.” Prog. Org. Coat., 76 844–851 (2013). https://doi.org/10.1016/j.porgcoat.2013.02.002

    Article  CAS  Google Scholar 

  3. Yasir, M, Amir, N, Ahmad, F, Ullah, S, Jimenez, M, “Effect of Basalt Fibers Dispersion on Steel Fire Protection Performance of Epoxy-Based Intumescent Coatings.” Prog. Org. Coat., 122 229–238 (2018). https://doi.org/10.1016/j.porgcoat.2018.05.029

    Article  CAS  Google Scholar 

  4. Yew, MC, Ramli Sulong, NH, Yew, MK, Amalina, MA, Johan, MR, “Influences of Flame-Retardant Fillers on Fire Protection and Mechanical Properties of Intumescent Coatings.” Prog. Org. Coat., 78 59–66 (2015). https://doi.org/10.1016/j.porgcoat.2014.10.006

    Article  CAS  Google Scholar 

  5. Jimenez, M, Duquesne, S, Bourbigot, S, “Intumescent Fire Protective Coating: Toward a Better Understanding of Their Mechanism of Action.” Thermochim. Acta., 449 16–26 (2006). https://doi.org/10.1016/j.tca.2006.07.008

    Article  CAS  Google Scholar 

  6. Wang, G, Yang, J, “Influences of Binder on Fire Protection and Anticorrosion Properties of Intumescent Fire Resistive Coating for Steel Structure.” Surf. Coat. Technol., 204 1186–1192 (2010). https://doi.org/10.1016/j.surfcoat.2009.10.040

    Article  CAS  Google Scholar 

  7. Li, XL, Zhang, FH, Jian, RK, Ai, YF, Ma, JL, Hui, GJ, Wang, DY, “Influence of Eco-friendly Calcium Gluconate on the Intumescent Flame-Retardant Epoxy Resin: Flame Retardancy, Smoke Suppression and Mechanical Properties.” Compos. B Eng., 176 107200 (2019). https://doi.org/10.1016/j.compositesb.2019.107200

    Article  CAS  Google Scholar 

  8. Qian, W, Li, X, Wu, Z, “Effects of Silane Coupling Agent/Organic Bentonite on Tea Saponin Intumescent Flame-Retardant Coatings.” Adv. Mater. Res.877 1318–1323 (2014). https://doi.org/10.4028/www.scientific.net/AMR.875-877.1318

    Article  CAS  Google Scholar 

  9. Chuang, C, Tsai, K, Yang, T, Ko, C, Wang, M, “Applied Clay Science Effects of Adding Organo-Clays for Acrylic-Based Intumescent Coating on Fire-Retardancy of Painted Thin Plywood.” Appl. Clay Sci., 53 709–715 (2011). https://doi.org/10.1016/j.clay.2011.06.009

    Article  CAS  Google Scholar 

  10. Gardelle, B, Duquesne, S, Vandereecken, P, Bellayer, S, Bourbigot, S, “Resistance to Fire of Curable Silicone/Expandable Graphite Based Coating: Effect of the Catalyst.” Eur. Polym. J., 49 2031–2041 (2013). https://doi.org/10.1016/j.eurpolymj.2013.04.021

    Article  CAS  Google Scholar 

  11. Yang, P, Ren, M, Chen, K, Liang, Y, Lü, Q, Zhang, T, “Synthesis of a Novel Silicon-Containing Epoxy Resin and Its Effect on Flame Retardancy, Thermal, and Mechanical Properties of Thermosetting Resins.” Mater. Today Commun., 19 186–195 (2019). https://doi.org/10.1016/j.mtcomm.2019.01.014

    Article  CAS  Google Scholar 

  12. Xu, L, Liu, X, An, Z, Yang, R, “EG-Based Coatings for Flame Retardance of Shape Stabilized Phase Change Materials.” Polym. Degrad. Stab., 161 114–120 (2019). https://doi.org/10.1016/j.polymdegradstab.2019.01.020

    Article  CAS  Google Scholar 

  13. Gardelle, B, Duquesne, S, Vandereecken, P, Bellayer, S, Bourbigot, S, “Resistance to Fire of Intumescent Silicone Based Coating: The Role of Organoclay.” Prog. Org. Coat., 76 1633–1641 (2013). https://doi.org/10.1016/j.porgcoat.2013.07.011

    Article  CAS  Google Scholar 

  14. Beaugendre, A, Lemesle, C, Bellayer, S, Degoutin, S, Duquesne, S, Casetta, M, Pierlot, C, Jaime, F, Kim, T, Jimenez, M, “Flame Retardant and Weathering Resistant Self-layering Epoxy-Silicone Coatings for Plastics.” Prog. Org. Coat., 136 105269 (2019). https://doi.org/10.1016/j.porgcoat.2019.105269

    Article  CAS  Google Scholar 

  15. Standard Test Method for Determining Flammability Characteristics of Plastics and Other Solid Materials Using Microscale Combustion, i (2018) 1–11. https://doi.org/10.1520/d7309-13.responsibility.

  16. Huggett, C, “Estimation of Rate of Heat Release by Means of Oxygen Consumption Measurements.” Fire Mater., 4 (2) 61–65 (1980)

    Article  CAS  Google Scholar 

  17. Gardelle, B, Duquesne, S, Rerat, V, Bourbigot, S, “Thermal Degradation and Fire Performance of Intumescent Silicone-Based Coatings.” Polym. Adv. Technol., 24 62–69 (2013). https://doi.org/10.1002/pat.3050

    Article  CAS  Google Scholar 

  18. Eduok, U, Faye, O, Szpunar, J, “Recent Developments and Applications of Protective Silicone Coatings: A Review of PDMS Functional Materials.” Prog. Org. Coat., 111 124–163 (2017). https://doi.org/10.1016/j.porgcoat.2017.05.012

    Article  CAS  Google Scholar 

  19. Wang, Z, Han, E, Ke, W, “Effect of Acrylic Polymer and Nanocomposite with Nano-SiO2 on Thermal Degradation and Fire Resistance of APP-DPER-MEL Coating.” Polym. Degrad. Stab., 91 1937–1947 (2006). https://doi.org/10.1016/j.polymdegradstab.2006.03.001

    Article  CAS  Google Scholar 

  20. Jimenez, M, Duquesne, S, Bourbigot, S, “Kinetic Analysis of the Thermal Degradation of an Epoxy-Based Intumescent Coating.” Polym. Degrad. Stab., 94 404–409 (2009). https://doi.org/10.1016/j.polymdegradstab.2008.11.021

    Article  CAS  Google Scholar 

  21. Pereira, CMC, Martins, MSS, Flame Retardancy of Fiber-Reinforced Polymer Composites Based on Nanoclays and Carbon Nanotubes. Elsevier, Amsterdam (2014). https://doi.org/10.1016/b978-0-444-53808-6.00017-2

    Book  Google Scholar 

  22. Sonnier, R, Otazaghine, B, Dumazert, L, Ménard, R, Viretto, A, Dumas, L, Bonnaud, L, Dubois, P, Safronava, N, Walters, R, Lyon, R, “Prediction of Thermosets Flammability Using a Model Based on Group Contributions.” Polymer (Guildf)., 127 203–213 (2017). https://doi.org/10.1016/j.polymer.2017.09.012

    Article  CAS  Google Scholar 

  23. Benin, V, Durganala, S, Morgan, AB, “Synthesis and Flame Retardant Testing of New Boronated and Phosphonated Aromatic Compounds.” J. Mater. Chem., 22 1180–1190 (2012). https://doi.org/10.1039/c1jm14682c

    Article  CAS  Google Scholar 

  24. Trivedi, MK, Branton, A, Trivedi, D, Nayak, G, Bairwa, K, Jana, S, “Physicochemical and Spectroscopic Characterization of Biofield Treated Triphenyl Phosphate.” Am. J. Appl. Chem., 3 168 (2015). https://doi.org/10.11648/j.ajac.20150305.13

    Article  CAS  Google Scholar 

  25. Wang, W, Peng, Y, Zhang, W, Li, J, “Effect of Pentaerythritol on the Properties of Wood- Flour/Polypropylene/Ammonium Polyphosphate Composite System.” BioResources, 10 6917–6927 (2015). https://doi.org/10.15376/biores.10.46917-6927

    Article  CAS  Google Scholar 

  26. Zhao, H, Pang, X, Lin, R, “Preparation of Boric Acid Modified Expandable Graphite and Its Influence on Polyethylene Combustion Characteristics.” J. Chil. Chem. Soc., 61 2767–2771 (2016). https://doi.org/10.4067/S0717-97072016000100004

    Article  CAS  Google Scholar 

  27. Kandola, BK, Luangtriratana, P, Duquesne, S, Bourbigot, S, “The Effects of Thermophysical Properties and Environmental Conditions on Fire Performance of Intumescent Coatings on Glass Fibre-Reinforced Epoxy Composites.” Materials (Basel), 8 5216–5237 (2015). https://doi.org/10.3390/ma8085216

    Article  CAS  Google Scholar 

  28. Wang, Z, Han, E, Ke, W, “Effect of Acrylic Polymer and Nanocomposite with Nano-SiO2 on Thermal Degradation and Fire Resistance of APP–DPER–MEL Coating.” Polym. Degrad. Stabil., 91 (9) 1937–1947 (2006). https://doi.org/10.1016/j.polymdegradstab.2006.03.001

    Article  CAS  Google Scholar 

  29. Shi, Y, Wang, G, “Applied Surface Science the Novel Silicon-Containing Epoxy/PEPA Phosphate Flame Retardant for Transparent Intumescent Fire Resistant Coating.” Appl. Surf. Sci., 385 453–463 (2016). https://doi.org/10.1016/j.apsusc.2016.05.107

    Article  CAS  Google Scholar 

  30. Gardelle, B, Duquesne, S, Vandereecken, P, Bourbigot, S, “Characterization of the Carbonization Process of Expandable Graphite/Silicone Formulations in a Simulated Fire.” Polym. Degrad. Stab., 98 1052–1063 (2013). https://doi.org/10.1016/j.polymdegradstab.2013.02.001

    Article  CAS  Google Scholar 

  31. Ciolacu, D, Ciolacu, F, Popa, VI, “Cellulose Allomorphs: Structure and Characterization.” Cellul. Chem. Technol., 45 13–21 (2011)

    CAS  Google Scholar 

  32. de Souza, MM, de Sa, SC, Zmozinski, AV, Peres, RS, Ferreira, CA, “Biomass as the Carbon Source in Intumescent Coatings for Steel Protection Against Fire.” Ind. Eng. Chem. Res., 55 11961–11969 (2016). https://doi.org/10.1021/acs.iecr.6b03537

    Article  CAS  Google Scholar 

  33. Ullah, S, Ahmad, F, Yusoff, PSMM, “Effect of Boric Acid and Melamine on the Intumescent Fire-Retardant Coating Composition for the Fire Protection of Structural Steel Substrates.” J. Appl. Polym. Sci., 128 2983–2993 (2013). https://doi.org/10.1002/app.38318

    Article  CAS  Google Scholar 

  34. Marciuš, M, Ristić, M, Ivanda, M, Musić, S, “Formation of Iron Oxides by Surface Oxidation of Iron Plate.” Croat. Chem. Acta., 85 117–124 (2012). https://doi.org/10.5562/cca1943

    Article  CAS  Google Scholar 

  35. Bannov, AG, Manakhov, A, Shibaev, AA, Ukhina, AV, Polčák, J, Maksimovskii, EA, “Synthesis Dynamics of Graphite Oxide.” Thermochim. Acta., 663 165–175 (2018). https://doi.org/10.1016/j.tca.2018.03.017

    Article  CAS  Google Scholar 

  36. Wang, Z, Han, E, Ke, W, “Influence of Expandable Graphite on Fire Resistance and Water Resistance of Flame-Retardant Coatings.” Corros. Sci., 49 2237–2253 (2007). https://doi.org/10.1016/j.corsci.2006.10.024

    Article  CAS  Google Scholar 

  37. Beraldo, CHM, Silveira, MRS, Baldissera, AF, Ferreira, CA, “A New Benzoxazine-Based Intumescent Coating for Passive Protection Against Fire.” Prog. Org. Coat., 137 105321 (2019). https://doi.org/10.1016/j.porgcoat.2019.105321

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Brazilian government agencies CAPES, CNPq, and FAPERGS for funding the research. The authors also thank Evonik for providing Degalan® P675 Acrylic resin, SILIKOPON® EF hybrid epoxy–silicone resin, and DYNASYLAN® AMEO crosslinker; SGS Polímeros for supplying RESYGS SPG 6070 alkyd resin; and, finally, to National de Grafite Company for supplying the expandable graphite.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreza P. Cardoso.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoso, A.P., de Sá, S.C., Beraldo, C.H.M. et al. Intumescent coatings using epoxy, alkyd, acrylic, silicone, and silicone–epoxy hybrid resins for steel fire protection. J Coat Technol Res 17, 1471–1488 (2020). https://doi.org/10.1007/s11998-020-00366-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-020-00366-9

Keywords

Navigation