Skip to main content

Advertisement

Log in

Interfacial adhesion measurement of a ceramic coating on metal substrate

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

The interfacial adhesion measurement of a ceramic coating on a metal substrate is studied by three-point bending (3PB) technique. In the measurement, interfacial cracks are induced during the 3PB test, and the interfacial energy release rate is calculated from the released energy per unit crack surface area during crack extension under the fixed displacement conditions. A finite element analysis (FEA) model encompassing the plastic behavior of the metal substrate is developed to simulate the 3PB test and extract the energy data. The inputs to the FEA model include the crack length, the maximum and critical loads corresponding to crack initiation, and the mechanical properties of the coating and substrate. A MoB/CoCr ceramic coating/stainless steel substrate system is investigated by the technique for demonstrating the utility of the technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jansen, F, Wei, XH, Dorfman, MR, Peters, JA, Nagy, DR, “Performance of dicalcium silicate coatings in hot-corrosive environment.” Surf. Coat. Technol., 149 57-61 (2002) doi:10.1016/S0257-8972(01)01381-0.

    Article  CAS  Google Scholar 

  2. Afrasiabi, A, Saremi, M, Kobayashi, A, “A comparative study on hot corrosion resistance of three types of thermal barrier coatings: YSZ, YSZ +Al2O3 and YSZ/Al2O3.” Mater. Sci. Eng. A, 478 264-269 (2008) doi:10.1016/j.msea.2007.06.001.

    Article  Google Scholar 

  3. Maiti, AK, Mukhopadhyay, N, Raman, R, “Effect of adding WC powder to the feedstock of WC-Co-Cr based HVOF coating and its impact on erosion and abrasion resistance.” Surf. Coat. Technol., 201 7781-7788 (2007) doi:10.1016/j.surfcoat.2007.03.014.

    Article  CAS  Google Scholar 

  4. Souza, VAD, Neville, A, “Corrosion and synergy in a WCCoCr HVOF thermal spray coating–understanding their role in erosion-corrosion degradation.” Wear, 259 171-180 (2005) doi:10.1016/j.wear.2004.12.003.

    Article  CAS  Google Scholar 

  5. Padture, NP, Gell, M, Jordan, EH, “Thermal barrier coatings for gas-turbine engine Applications.” Science, 296 280-284 (2002) doi:10.1126/science.1068609.

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Padture, NP, Schlichting, KW, Bhatia, T, Ozturk, A, Cetegen, B et al., “Towards durable thermal barrier coatings with novel microstructures deposited by solutionprecursor plasma spray.” Acta Mater., 49 2251-2257 (2001) doi:10.1016/S1359-6454(01)00130-6.

    Article  CAS  Google Scholar 

  7. Chen, XJ, Chen, GN, Zhang, K, Luo, GX, Xiao, JH, “On the thermally induced interfacial delamination of a segmented coating.” Surf. Coat. Technol., 202 2878-2884. (2008) doi:10.1016/j.surfcoat.2007.10.031.

    Article  CAS  Google Scholar 

  8. Chen, ZX, Wang, ZG, Yuan, FH, Zhu, SJ, “Interfacial fracture behavior of a thermal barrier coating system under four-point bend loading.” Mater. Sci. Eng. A, 483-484 629-32 (2008) doi:10.1016/j.msea.2007.01.166.

    Google Scholar 

  9. Mittal, KL, Adhesion Measurement of thin films, thick films, and bulk coatings. ASTM, Philadelphia (1978).

    Book  Google Scholar 

  10. Volinsky, AA, Moody, NR, Gerberich, WW, “Interfacial toughness measurements for thin films on substrates.” Acta Mater., 50 441-466 (2002) doi:10.1016/S1359-6454(01)00354-8.

    Article  CAS  Google Scholar 

  11. Houérou, V.L., Gauthier, C., Schirrer, R., “Energy based model to assess interfacial adhesion using a scratch test.” J. Mater. Sci., 43 5747-5754 (2008) doi:10.1007/s10853-008-2869-6.

    Article  ADS  Google Scholar 

  12. Shaviv, R, Roham, S, Woytowitz, P, “Optimizing the precision of the four-point bend test for the measurement of thin film adhesion.” Microelectro. Eng., 82 99-120 (2005) doi:10.1016/j.mee.2005.06.006.

    Article  CAS  Google Scholar 

  13. Dauskardt, RH, Lane, M, Ma, Q, Krishna, N, “Adhesion and debonding of multi-layer thin film structures.” Eng. Fract. Mech., 61 141-162 (1998) doi:10.1016/S0013-7944(98)00052-6.

    Article  Google Scholar 

  14. Li, H, Khor, KA, Cheang, P, “Adhesive and bending failure of thermal sprayed hydroxyapatite coatings: Effect of nanostructures at interface and crack propagation phenomenon during bending.” Eng. Fract. Mech., 74 1894-1903 (2007) doi:10.1016/j.engfracmech.2006.06.001.

    Article  Google Scholar 

  15. Turner, MR, Dalgleish, BJ, He, MY, Evans, AG, “A fracture resistance measurement method for bimaterial interfaces having large debond energy.” Acta Metall. Mater., 43 3459-3465 (1995) doi:10.1016/0956-7151(95)00037-V.

    Article  CAS  Google Scholar 

  16. Bull, SJ, Berasetegui, E.G, “An overview of the potential of quantitative coating adhesion measurement by scratch.” Tribol. Int., 39 99-114 (2006) doi:10.1016/j.triboint.2005.04.013.

    Article  CAS  Google Scholar 

  17. Marot, G, Lesage, J, Démarécaux, Ph, Hadad, M, Siegmann, St, Staia, MH, “Interfacial indentation and shear tests to determine the adhesion of thermal spray coatings.” Surf. Coat. Technol., 201 2080-2085 (2006) doi:10.1016/j.surfcoat.2006.04.046.

    Article  CAS  Google Scholar 

  18. Cordill, MJ, Bahr, DF, Moody, NR, Gerberich, WW, “Recent developments in thin film adhesion measurement.” IEEE Trans. Dev. Mater. Reliab., 4 163-168 (2004) doi:10.1109/TDMR.2004.829071.

    Article  CAS  Google Scholar 

  19. Chicot, D, Araujo, P, Horny, N, Tricoteaux, A, Lesage, J, “Application of the interfacial indentation test for adhesion toughness determination.” Surf. Coat. Technol., 200 174-77 (2005) doi:10.1016/j.surfcoat.2005.02.045.

    Article  CAS  Google Scholar 

  20. Banholzer, B, Brameshuber, W, Jung, W, “Analytical evaluation of pull-out tests–The inverse problem.” Cement and Concrete Compos., 28 564-571 (2006) doi:10.1016/j.cemconcomp.2006.02.015.

    Article  CAS  Google Scholar 

  21. Greenhalgh, E, Lewis, A, Bowen, R, Grassi, M, “Evaluation of toughening concepts at structural features in CFRP–Part I: Stiffener pull-off.” Compos. Part A, 37 1521-1535 (2006) doi:10.1016/j.compositesa.2005.11.009.

    Article  Google Scholar 

  22. Anderson, TL, Fracture Mechanics: Fundamentals and Applications. CRC Press, Boca Raton (1995).

    MATH  Google Scholar 

  23. Hutchinson, JW, Suo, Z, “Mixed model cracking in layered materials.” Adv. Appl. Mech., 29 63-91 (1992) doi:10.1016/S0065-2156(08)70164-9.

    Article  MATH  Google Scholar 

  24. Elizald, MR, Sánchez, JM, Martínez-Esnaola, J et al., “Interfacial fracture induced by cross-sectional nanoindentation in metal-ceramic thin film structures.” Acta Mater., 51 4295-4305 (2003) doi:10.1016/S1359-6454(03)00256-8.

    Article  Google Scholar 

  25. Sánchez, JM, EL-Mansy, S, Sun, B, Scherban, T, Fang, N et al., “Cross-sectional nanoindentation: A new technique for thin film interfacial adhesion characterization.” Acta Mater., 47 4405-4413 (1999) doi:10.1016/S1359-6454(99)00254-2.

    Article  Google Scholar 

  26. Bao, YW, Zhou, YC, Bu, XX, Qiu, Y, “Evaluating elastic modulus and strength of hard coatings by relative method.” Mater. Sci. Eng. A, 458 268-274 (2007) doi:10.1016/j.msea.2006.12.131.

    Article  Google Scholar 

  27. Rouzaud, André, Barbier, E, Ernoult, J, Quesnel, E, “A method for elastic modulus measurements of magnetron sputtered thin films dedicated to mechanical applications.” Thin Solid Films 270 270-274 (1995) doi:10.1016/0040-6090(95)06921-6.

    Article  CAS  ADS  Google Scholar 

  28. Beghini, M, Bertini, L, Frendo, F, “Measurement of Coatings’ Elastic Properties by Mechanical Methods: Part 1. Consideration on Experimental Errors.” Exper. Mech. 41 293-304 (2001) doi:10.1007/BF02323922.

    Article  Google Scholar 

  29. Beghini, M, Benamati, G, Bertini, L, Frendo, F, “Measurement of coatings’ elastic properties by mechanical methods Part 2. Application to thermal barrier coatings.” Exper. Mech., 41 305-311 (2001) doi:10.1007/BF02323923.

    Article  Google Scholar 

  30. ABAQUS, Reference Manuals, Version 6.5. Hibbit, Karlsson and Sorensen, Providence, RI (2004)

  31. Parks, DM, “The virtual crack extension method for Non-linear material behavior.” Comp. Meth. In Appl. Mech. Eng., 12 353-364 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  32. Hellen, TK, “On the method of virtual crack extensions.” Int. J. Num. Meth. Eng., 9 187-207 (1975) doi:10.1002/nme.1620090114.

    Article  MATH  Google Scholar 

  33. Jensen, HM, “The blister test for interface toughness measurement.” Eng. Fract. Mech., 40 475-486 (1991) doi:10.1016/0013-7944(91)90144-P.

    Article  Google Scholar 

  34. Nie, PL, Shen, Y, Chen, QL, Cai, X, “Effects of residual stresses on interfacial adhesion measurement.” Mech. Mater., 41 545-552 (2009) doi:10.1016/j.mechmat.2009.01.022.

    Article  Google Scholar 

  35. Li, H, Khor, KA, Cheang, P, “Young’s modulus and fracture toughness determination of high velocity oxy-fuel-sprayed bioceramic coatings.” Surf. Coat. Tech., 155 21-32 (2002) doi:10.1016/S0257-8972(02)00026-9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was financially supported by Hong Kong Research Grants Council (RGC) through Competitive Earmarked Research Grant (CERG) No. CityU 112307.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pulin Nie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nie, P., Lv, H., Zhou, T. et al. Interfacial adhesion measurement of a ceramic coating on metal substrate. J Coat Technol Res 7, 391–398 (2010). https://doi.org/10.1007/s11998-009-9192-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-009-9192-2

Keywords

Navigation