Skip to main content
Log in

Thermal-induced recovery of small deformations and degradation defects on epoxy coating surface

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Surface defects, which are dependent on the surface properties, determine the appearance, toughness, and other properties of coatings; thus, changes to the morphology of a damaged epoxy coating surface were investigated on annealing. Changes in mechanically produced indentations and scratches with annealing indicate a surface transition temperature about 10 degree lower than the measured bulk glass transition temperature (T g). Polymer molecules at a free surface, even in a crosslinked coating, may have higher mobility, and thus allow different relaxation activity from the bulk material. The eventual extent of deformation is a function of the annealing temperature and time. Results showed that the deformation profile diminished, driven by viscoelastic deformation and surface energy; the effect of structural relaxation will be further studied. When the surface features were generated by photodegradation, the roughness increased initially when temperature was increased, possibly due to phase coarsening, and then the roughness diminished during extended annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zaitseva, AV, Zaitsev, VB, Rudoy, VM, “The study of polystyrene surface glass transition by luminescent molecular probes”. Surface Science, 566–568 821–825 (2004). doi:10.1016/j.susc.2004.06.112.

    Article  Google Scholar 

  2. Jones, RAL, “The dynamics of thin polymer films”. Current Opinion in Colloid & Interface Science, 4(2) 153–158 (1999). doi:10.1016/S1359-0294(99)00025-4.

    Article  Google Scholar 

  3. Kerle, T, Lin, Z, Kim, HC, Russell, TP, “Mobility of polymers at the air/polymer interface”. Macromolecules, 34 3484–3492 (2001). doi:10.1021/ma0020335.

    Article  CAS  ADS  Google Scholar 

  4. Consiglio, R, Randall, NX, Bellaton, B, von Stebut, J, “The nano-scratch tester as a new tool for assessing the strength of ultrathin hard coatings and the mar resistance of polymer films”. Thin Solid Films, 332 151–156 (1998). doi:10.1016/S0040-6090(98)00987-0.

    Article  CAS  ADS  Google Scholar 

  5. Wang, M, “The Development of Scratch Test Methodology and Characterization of Surface Damage of Polypropylene.” MS Thesis, Texas A & M University, August 2003

  6. Chen Z, Wu YLL, Chwa E, Tham O, “Scratch resistance of brittle thin films on compliant substrates”. Materials Science and Engineering A 493 (1–2) 292–298 (2008). doi:10.1016/j.msea.2007.07.099.

    Google Scholar 

  7. Betz, P, Bartelt, A, “Scratch resistant clear coats: development of new testing methods for improved coatings”. Prog. Org. Coat., 22 (1–4) 27–37 (1993). doi:10.1016/0033-0655(93)80013-Z.

    Article  CAS  Google Scholar 

  8. Ryntz, RA, Abell, BD, Poplano, GM, Nguyen LH, Shen, WC, “Scratch Resistance Behavior of Model Coating Systems”. Journal of Coatings Technology, 72 47–53 (2000). doi:10.1007/BF02698019.

    Article  CAS  Google Scholar 

  9. Wong, CC, Qin, Z, Yang, Z, “The absence of physical-aging effects on the surface relaxations of rubbed polystyrene”. European Physical Journal E, 25 291–298 (2008). doi:10.1140/epje/i2007-10294-0.

    Article  CAS  PubMed  Google Scholar 

  10. Croll, SG, Shi, X, Fernando, BMD, “The interplay of physical aging and degradation during weathering for two crosslinked coatings”. Prog. Org. Coat., 61 136–144 (2008). doi:10.1016/j.porgcoat.2007.09.024.

    Article  CAS  Google Scholar 

  11. Shi, X, Fernando, BMD, Croll, SG, “Concurrent physical aging and degradation of crosslinked coating systems in accelerated weathering”. Journal of Coatings Technology & Research, 5(3) 299–310 (2008). doi:10.1007/s11998-008-9081-0.

    Article  CAS  Google Scholar 

  12. Humphries, ADL, Miles, MJ, Hobbs, JK, “A mechanical microscope: high-speed atomic force microscopy”. Applied Physics Letter, 86 034106 (2005). doi:10.1063/1.1855407.

    Article  ADS  Google Scholar 

  13. Carpick, RW, Salmeron, M, “Scratching the surface: fundamental investigations of tribology with atomic force microscopy”. Chemical Reviews, 97(4) 1163–1194 (1997). doi:10.1021/cr960068q.

    Article  CAS  PubMed  Google Scholar 

  14. DiBattista, M, Patel, SV, Mansfield, JF, Schwank, JW, “In situ elevated temperature imaging of thin films with a microfabricated hot stage for scanning probe microscopes”. Appl. Surf. Sci., 141 119–128 (1999). doi:10.1016/S0169-4332(98)00603-5.

    Article  CAS  ADS  Google Scholar 

  15. Regnier, N, Fayos, M, Moreau, P, Lafontaine, E, Montaigne, B, “Cure behavior and thermal degradation mechanisms of epoxy and epoxy-cyanate resins”. Polymers for Advanced Technologies, 10 (11) 637–646 (1999). doi:10.1002/(SICI)1099-1581(199911)10:11<637::AID-PAT915>3.0.CO;2-7.

    Article  CAS  Google Scholar 

  16. Fakhraai, Z, Forrest, JA, “Measuring the surface dynamics of glassy polymers”. Science, 319 600–604 (2008). doi:10.1126/science.1151205.

    Article  CAS  PubMed  Google Scholar 

  17. Bliznyuk, VN, Assender, HE, Briggs, GAD, “Surface glass transition temperature of amorphous polymers. A new insight with SFM”. Macromolecules, 35, 6613–6622 (2002). doi:10.1021/ma011326a.

    Article  CAS  ADS  Google Scholar 

  18. Weigner, DE, Schwartz, LW, Eley, RR, “Role of surface tension gradients in correcting coating defects in corners”. Journal of Colloid and Interface Science, 179 66–75 (1996). doi:10.1006/jcis.1996.0189.

    Article  Google Scholar 

  19. Krupicka, A, Johansson, B, Johansson, M, Hult, A, “The effect of long-term recovery and storage on the mechanical response of ductile polyurethane coatings”. Prog. Org. Coat., 48 14–27 (2003). doi:10.1016/S0300-9440(03)00012-2.

    Article  CAS  Google Scholar 

  20. Charrault, E, Gauthier, C, Marie, P, Schirrer, R, “Structure recovery (physical aging) of the Friction Coefficient of polymers”. Journal of Polymer Science: Part B: Polymer Physics, 46 1337–1347 (2008). doi:10.1002/polb.21468.

    Article  CAS  Google Scholar 

  21. Skaja, AD, “Multiple-Techniques Characterization of Photodegradation in Polyester–Urethane Coatings.” PhD Dissertation, North Dakota State University, April 2005

  22. VanLandingham, MR, Eduljee, RF, Gillespie, JR, “Relationships between stoichiometry, microstructure, and properties for amine-cured epoxies”. J Appl Polym Sci, 71 699–712 (1999). doi:10.1002/(SICI)1097-4628(19990131)71:5<699::AID-APP4>3.0.CO;2-D.

    Article  CAS  Google Scholar 

  23. Gu, X, Sung, L, Kidah, B, Oudina, M, Martin, D, Rezig, A, Stanley, D, Jean, YC, Nguyen, T, Martin, JW, “Relating Gloss Loss to Nanoscale/Microscale Topographical Changes for a Polymer Coating Exposed to UV Radiation”. Polymeric Materials: Science and Engineering, 51 319 (2006).

    Google Scholar 

  24. Biggs, S, Lukey, CA, Spinks, GM, Yau, ST, “An atomic force microscopy study of weathering of polyester/melamine paint surfaces”. Prog. Org. Coat., 42(1–2) 49–58 (2001). doi:10.1016/S0300-9440(01)00147-3.

    Article  CAS  Google Scholar 

  25. Croll, SG, Hinderliter, BR, “Monte Carlo approach to estimating coating service lifetime during weathering”. Surface Coatings International Part B: Coatings Transactions, 88 177–183 (2005). doi:10.1007/BF02699570.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the US Air Force Office of Scientific Research for funding this research. We thank Brad Halverson from the NDSU Center for Nanoscale Science and Engineering (CNSE) for his aid in the use of the Hysitron nanoindentor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart G. Croll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, X., Croll, S.G. Thermal-induced recovery of small deformations and degradation defects on epoxy coating surface. J Coat Technol Res 7, 73–84 (2010). https://doi.org/10.1007/s11998-009-9176-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-009-9176-2

Keywords

Navigation