Skip to main content
Log in

Application of the Flory–Rehner equation and the Griffith fracture criterion to paint stripping

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Chemical paint stripping is a part of paint technology that is very necessary but for which quantitative understanding has been comparatively unexplored. Traditional paint strippers were based on very effective solvents, such as dichloromethane, that are now recognized as being dangerous for people and the environment. Optimal replacement by environmentally sound, and effective, paint strippers requires a better understanding of the action of the traditional materials. This communication links the stripping of cured paint films by aggressive solvents to the effect that swelling has on the cohesive and adhesive properties of a crosslinked polymer network. Swelling, described by the well-known Flory–Rehner equation, can be used to estimate the reduction in strength of the coating film. Thus, its resistance to fracture, described by the Griffith equation, is decreased so that the swelling stresses cause severe weakening and sometimes spontaneous removal. The equations lead to a description that fits well with common experience and so may be useful in selecting materials for future, less toxic, and more easily disposed, stripping formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Nylén, P. and Sunderland, E., “Modern Surface Coatings,” John Wiley and Sons, Ltd., London (1965).

    Google Scholar 

  2. Spring, S., “The Mechanism of Paint Stripping,” Metal Finishing, 57, 63 – 67 (1959).

    CAS  Google Scholar 

  3. Billard, O, “Méchanisme du décapage des peinture par voie chimique: de la comprehension des phénomènes physico-chimiques au development d’outils d’aide à la formulation de décapants.” Thèse doctorat, Université des Sciences et Technologies de Lille, 1998

  4. Del Nero, V, Siat, F. C., Marti, M. J., Aubry, J. M., Lallier, J. P., Dupuy, N., Huvenne, J. P., “Mechanism of paint removing by organic solvents,” AIP Conference Proceedings, Organic Coatings, 354, 469-476 (1996).

    Article  CAS  ADS  Google Scholar 

  5. Reichardt, C., Solvents and solvents effect in organic chemistry, VCH, Weinheim (1990).

    Google Scholar 

  6. Evans, J, “The Fine Art of Stripping: A Chemistry Problem in Conservation.” Chem. Austr., March, 8–11 (2005)

  7. Teas, J. P., “Graphic analysis of resin solubilities,” J. Paint Technol., 40(516), 19 –25 (1968).

    CAS  Google Scholar 

  8. Wollbrinck, T., “The Composition of Proprietary Paint Strippers,” J. Am. Inst. Conserv., 32, 43 – 57 (1993) doi:10.2307/3179651.

    Article  Google Scholar 

  9. Sperling, L. H., “Introduction to Physical Polymer Science,” Wiley-Interscience, Hoboken NJ, 4th Ed. (2006).

    Google Scholar 

  10. Flory, P. J., Rehner, J., “Statistical Mechanics of Swelling of Crosslinked Polymer Networks,” Chem. Phys., 11, 521 – 526 (1943).

    CAS  ADS  Google Scholar 

  11. Taylor, J. W., Winnik, M. A., “Functional Latex and Thermoset Latex Films,” J. Coat. Technol. Res., 1(3), 163 – 190 (2004).

    CAS  Google Scholar 

  12. Boyce, M. C., Arruda, E. M., “Swelling and Mechanical Stretching of Elastomeric Materials,” Math. Mech. Solids, 6, 641–659 (2001) doi:10.1177/108128650100600605.

    Article  MATH  Google Scholar 

  13. Sukumaran, S. K., Beaucage, G., “A structural model for equilibrium swollen networks,” Europhys. Lett., 59(5), 714 – 720 (2002) doi:10.1209/epl/i2002-00184-7.

    Article  CAS  ADS  Google Scholar 

  14. Kontogeorgis, GM, “The Hansen Solubility Parameters (HSP) in Thermodynamic Models for Polymer Solutions.” In: Hansen, CM (ed.) Chapter 4 in Hansen Solubility Parameters: A User’s Handbook, 2nd ed. CRC Press, Boca Raton, FL (2007)

  15. Calzia, K. J., Lesser, A. J., “Correlating yield response with molecular architecture in polymer glasses,” J. Mater. Sci., 42, 5229–5238 (2007) doi:10.1007/s10853-006-1268-0.

    Article  CAS  ADS  Google Scholar 

  16. Griffith, A. A., “The Phenomena of Rupture and Flow in Solids,” Phil. Trans. Roy. Soc. Lond. Series A, 221, 163 – 198 (1921) doi:10.1098/rsta.1921.0006.

    Article  ADS  Google Scholar 

  17. Irwin, G., “Analysis of stresses and strains near the end of a crack traversing a plate,” J. Appl. Mech., 24, 361–364 (1957).

    Google Scholar 

  18. Orowan, E, “Fracture and Strength of Solids.” Rept. Prog. Phys., XII 185–232 (1948)

  19. Rice, J. R., “A Path Independent Integral and Approximate Analysis of Strain Concentration by Notches and Cracks,” Trans ASME, J. Appl. Mech., 35, 379 – 386 (1968).

    Google Scholar 

  20. Treloar, L. R. G., The Physics of Rubber Elasticity, Clarendon Press, Oxford UK (1975).

    Google Scholar 

  21. Xing, X., Goldbart, P. M., Radzihovsky, L., “Thermal Fluctuations and Rubber Elasticity,” Phys. Rev. Lett., 98, 075502 (2007) doi:10.1103/PhysRevLett.98.075502.

    Article  PubMed  ADS  Google Scholar 

  22. Croll, S. G., “The Origin of Internal Stress in Solvent Cast Thermoplastic Coatings,” J. App. Poly. Sci., Vol. 23, No. 3, 847-858 (1979) doi:10.1002/app.1979.070230319.

    Article  CAS  Google Scholar 

  23. Ward, I. M., Sweeney, J., An Introduction to The Mechanical Properties of Solid Polymers, John Wiley & Sons Ltd., Chichester, UK, (2004).

    Google Scholar 

  24. Crawford, R. J., Plastics Engineering, Pergamon, Oxford UK, 2nd Edition (1987).

    Google Scholar 

  25. Basu, S. K., McCormick, A. V., Scriven, L. E., “Stress Generation by Solvent Absorption and Wrinkling of a Cross-Linked Coating atop a Viscous or Elastic Base,” Langmuir, 22, 5916 – 5924 (2006) doi:10.1021/la060551o.

    Article  CAS  PubMed  Google Scholar 

  26. Sultan, E., Boudaoud, A., “The Buckling of a Swollen Thin Gel Layer Bound to a Compliant Substrate,” J. Appl. Mech, 75, 51002 (2008) doi:10.1115/1.2936922.

    Article  Google Scholar 

  27. Gerberich, W. W., Cordill, M. J., “Physics of Adhesion”, Rep. Prog. Phys. 69, 2157 – 2203 (2006) doi:10.1088/0034-4885/69/7/R03.

    Article  CAS  ADS  Google Scholar 

  28. de Joussineau, G., Petit, J-P., Barquins, M., “On the simulation of the flaking paint due to internal stresses: A simple model,” Int. J. Adhesion & Adhesives, 25, 518 – 526 (2005) doi:10.1016/j.ijadhadh.2005.02.003.

    Article  Google Scholar 

  29. Fowkes, F. M., “Role of acid-base interfacial bonding in adhesion,” J. Adhesion Sci. Tech, 11, 7 - 27 (1987). doi:10.1163/156856187X00049

    Article  CAS  Google Scholar 

  30. Della Volpe, C., Maniglio, D., Brugnara, M., Siboni, S., Morra, M., “The solid surface free energy calculation I. In defense of the multicomponent approach,” J. Coll. Int. Sci., 271, 434 - 453 (2004) doi:10.1016/j.jcis.2003.09.049.

    Article  CAS  Google Scholar 

  31. Li, X-M., Shen, Z., He, T., Wessling, M., “Modeling on Swelling Behaviour of a Confined Polymer Network,” J. Polym. Sci: B, 46, 1589 – 1593 (2008).

    Article  CAS  Google Scholar 

  32. Croll, S. G., “Adhesion Loss due to Internal Strain,” J. Coat. Technol., 52(665), 35 - 43 (1980).

    CAS  Google Scholar 

  33. Queslel, J. P., Mark, J. E., “Swelling Equilibrium Studies of Elastomeric Network Structures,” Adv. Polym. Sci., 71, 229–248 (1985).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Croll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Croll, S.G. Application of the Flory–Rehner equation and the Griffith fracture criterion to paint stripping. J Coat Technol Res 7, 49–55 (2010). https://doi.org/10.1007/s11998-009-9166-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-009-9166-4

Keywords

Navigation