Skip to main content
Log in

A Novel Synergistic Freezing Assisted by Infrared Pre-dehydration Combined with Magnetic Field: Effect on Freezing Efficiency and Thawed Product Qualities of Beef

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The effect of infrared pre-dehydration combined with magnetic field freezing on beef freezing efficiency and thawed product quality was investigated. The freezing time was reduced 27.13% by pre-dehydration combined with magnetic field freezing (DCMF). The thawing loss was reduced from 4.39% for common freezing (CF) to 2.05% for pre-dehydration freezing (DF), 1.78% for magnetic field freezing, and 0.31% for pre-dehydration combined with magnetic field freezing, respectively. In addition, both magnetic field freezing (MF) and infrared pre-dehydration combined with magnetic field freezing (DCMF) can better maintain the moisture state in the sample. The results of color and pH confirmed that the product quality of DCMF was superior to other conditions. The thermal stability of myofibrillar protein of thawed products were all well maintained. The secondary structure of beef protein was well maintained after pre-dehydration combined with magnetic field freezing. Thiobarbituric acid-reactive substances (TBARS) value results also show that DCMF has less effect on fat oxidation. Therefore, infrared pre-dehydration combined with magnetic field freezing could be a promising method for beef preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data are available from the corresponding author upon suitable request.

References

  • Abie, S. M., Münch, D., Egelandsdal, B., Bjerke, F., Wergeland, I., & Martinsen, Ø. G. (2021). Combined 0.2 T static magnetic field and 20 kHz, 2 V/cm square wave electric field do not affect supercooling and freezing time of saline solution and meat samples. Journal of Food Engineering, 311.

  • Amiri, A., Mousakhani-Ganjeh, A., Shafiekhani, S., Mandal, R., Singh, A. P., & Kenari, R. E. (2019). Effect of high voltage electrostatic field thawing on the functional and physicochemical properties of myofibrillar proteins. Innovative Food Science & Emerging Technologies, 56.

  • Cai, L., Cao, M., Cao, A., Regenstein, J., Li, J., & Guan, R. (2018). Ultrasound or microwave vacuum thawing of red seabream (Pagrus major) fillets. Ultrasonics Sonochemistry, 47, 122–132.

    Article  CAS  PubMed  Google Scholar 

  • Castro-Giráldez, M., Balaguer, N., Hinarejos, E., & Fito, P. J. (2014). Thermodynamic approach of meat freezing process. Innovative Food Science & Emerging Technologies, 23, 138–145.

    Article  CAS  Google Scholar 

  • Chen, L. B., & Fan, K. (2021). Pulsed vacuum impregnated trehalose to improve the physicochemical quality of frozen-thawed kiwifruit. International Journal of Food Science & Technology, 57(1), 268–275.

    Article  CAS  Google Scholar 

  • Cheng, H., Song, S., Jung, E. Y., Jeong, J. Y., Joo, S. T., & Kim, G. D. (2020). Comparison of beef quality influenced by freeze-thawing among different beef cuts having different muscle fiber characteristics. Meat Science, 169, 108206.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, S., Wang, X., Li, R., Yang, H., Wang, H., Wang, H., & Tan, M. (2019). Influence of multiple freeze-thaw cycles on quality characteristics of beef semimembranous muscle: With emphasis on water status and distribution by LF-NMR and MRI. Meat Science, 147, 44–52.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, X. -F., Zhang, M., Adhikari, B., & Islam, M. N. (2014). Effect of power ultrasound and pulsed vacuum treatments on the dehydration kinetics, distribution, and status of water in osmotically dehydrated strawberry: A combined NMR and DSC study. Food and Bioprocess Technology, 7(10), 2782–2792.

    Article  CAS  Google Scholar 

  • Choi, Y. S., Ku, S. K., Jeong, J. Y., Jeon, K. H., & Kim, Y. B. (2015). Changes in ultrastructure and sensory characteristics on electro-magnetic and air blast freezing of beef during frozen storage. Korean Journal for Food Science of Animal Resources, 35(1), 27–34.

    Article  PubMed  PubMed Central  Google Scholar 

  • da Silva Bernardo, A. P., da Silva, A. C. M., Francisco, V. C., Ribeiro, F. A., Nassu, R. T., Calkins, C. R., & da Silva do Nascimento M & Pflanzer SB,. (2020). Effects of freezing and thawing on microbiological and physical-chemical properties of dry-aged beef. Meat Science, 161, 108003.

    Article  PubMed  CAS  Google Scholar 

  • Delgado, A. E., Zheng, L., & Sun, D. -W. (2008). Influence of ultrasound on freezing rate of immersion-frozen apples. Food and Bioprocess Technology, 2(3), 263–270.

    Article  Google Scholar 

  • Dermesonlouoglou, E. K., Giannakourou, M., & Taoukis, P. S. (2016). Kinetic study of the effect of the osmotic dehydration pre-treatment with alternative osmotic solutes to the shelf life of frozen strawberry. Food and Bioproducts Processing, 99, 212–221.

    Article  CAS  Google Scholar 

  • Dermesonlouoglou, E. K., Giannakourou, M. C., & Taoukis, P. (2007). Stability of dehydrofrozen tomatoes pretreated with alternative osmotic solutes. Journal of Food Engineering, 78(1), 272–280.

    Article  CAS  Google Scholar 

  • Erikson, U., Kjørsvik, E., Bardal, T., Digre, H., Schei, M., Søreide, T. S., & Aursand, I. G. (2016). Quality of Atlantic cod frozen in cell alive system, air-blast, and cold storage freezers. Journal of Aquatic Food Product Technology, 25(7), 1001–1020.

    Article  Google Scholar 

  • Ersoy, B., Aksan, E., & Ozeren, A. (2008). The effect of thawing methods on the quality of eels (Anguilla anguilla). Food Chemistry, 111(2), 377–380.

    Article  CAS  PubMed  Google Scholar 

  • Fan, K., Zhang, M., & Mujumdar, A. S. (2018). Recent developments in high efficient freeze-drying of fruits and vegetables assisted by microwave: A review. Critical Reviews in Food Science and Nutrition, 59(8), 1357–1366.

    Article  PubMed  Google Scholar 

  • Fan, K., Zhang, M., Wang, W., & Bhandari, B. (2020). A novel method of osmotic-dehydrofreezing with ultrasound enhancement to improve water status and physicochemical properties of kiwifruit. International Journal of Refrigeration, 113, 49–57.

    Article  CAS  Google Scholar 

  • Graiver, N., Pinotti, A., Califano, A., & Zaritzky, N. (2006). Diffusion of sodium chloride in pork tissue. Journal of Food Engineering, 77(4), 910–918.

    Article  CAS  Google Scholar 

  • Guo, Z., Ge, X., Yang, L., Ma, G., Ma, J., Yu, Q. L., & Han, L. (2021). Ultrasound-assisted thawing of frozen white yak meat: Effects on thawing rate, meat quality, nutrients, and microstructure. Ultrasonics Sonochemistry, 70, 105345.

    Article  CAS  PubMed  Google Scholar 

  • Hamidi, N., & Tsuruta, T. (2008). Improvement of freezing quality of food by pre-dehydration with microwave-vacuum drying. Journal of Thermal Science and Technology, 3(1), 86–93.

    Article  Google Scholar 

  • He, X., Liu, R., Nirasawa, S., Zheng, D., & Liu, H. (2013). Effect of high voltage electrostatic field treatment on thawing characteristics and post-thawing quality of frozen pork tenderloin meat. Journal of Food Engineering, 115(2), 245–250.

    Article  Google Scholar 

  • Hu, F., Qian, S., Huang, F., Han, D., Li, X., & Zhang, C. (2021). Combined impacts of low voltage electrostatic field and high humidity assisted-thawing on quality of pork steaks. LWT - Food Science and Technology, 150.

  • Hu, R., Zhang, M., Liu, W., Mujumdar, A. S., & Bai, B. (2022a). Novel synergistic freezing methods and technologies for enhanced food product quality: a critical review. Comprehensive Reviews in Food Science and Food Safety.

  • Hu, R., Zhang, M., & Mujumdar, A. S. (2022b). Application of infrared and microwave heating prior to freezing of pork: effect on frozen meat quality. Meat Science, 189.

  • James, C., Purnell, G., & James, S. J. (2014). A critical review of dehydrofreezing of fruits and vegetables. Food and Bioprocess Technology, 7(5), 1219–1234.

    Article  Google Scholar 

  • James, C., Reitz, B., & James, S. J. (2015). The freezing characteristics of garlic bulbs (Allium sativum L.) frozen conventionally or with the assistance of an oscillating weak magnetic field. Food and Bioprocess Technology, 8(3), 702–708.

  • Kiani, H., & Sun, D. -W. (2011). Water crystallization and its importance to freezing of foods: A review. Trends in Food Science & Technology, 22(8), 407–426.

    Article  CAS  Google Scholar 

  • Li, L., Zhang, M., & Yang, P. (2019). Suitability of LF-NMR to analysis water state and predict dielectric properties of Chinese yam during microwave vacuum drying. LWT - Food Science and Technology, 105, 257–264.

    Article  CAS  Google Scholar 

  • Liu, W., Zhang, M., Bhandari, B., & Yu, D. (2021). A novel combination of LF-NMR and NIR to intelligent control in pulse-spouted microwave freeze drying of blueberry. LWT - Food Science and Technology, 137.

  • Mousakhani-Ganjeh, A., Hamdami, N., & Soltanizadeh, N. (2015). Impact of high voltage electric field thawing on the quality of frozen tuna fish (Thunnus albacares). Journal of Food Engineering, 156, 39–44.

    Article  Google Scholar 

  • Otero, L., Rodríguez, A. C., Pérez-Mateos, M., & Sanz, P. D. (2016). Effects of magnetic fields on freezing: Application to biological products. Comprehensive Reviews in Food Science and Food Safety, 15(3), 646–667.

    Article  PubMed  Google Scholar 

  • Owada, N. (2007). Highly efficient freezing apparatus and highly efficent freezing methods. United States Patent.

    Google Scholar 

  • Purnell, G., James, C., & James, S. J. (2017). The effects of applying oscillating magnetic fields during the freezing of apple and potato. Food and Bioprocess Technology, 10(12), 2113–2122.

    Article  Google Scholar 

  • Puza, E. A., Mayo, F. E. C., Polo, J. M. A., De la Matta, A. P., Espinoza, J. S., & Alva, J. C. (2019). Effect of freezing with oscillating magnetic fields on the physical and sensorial characteristics of mango (Mangifera indica L. cv. ‘Kent’). Brazilian Journal of Food Technology, 22.

  • Qian, S., Hu, F., Mehmood, W., Li, X., Zhang, C., & Blecker, C. (2022). The rise of thawing drip: Freezing rate effects on ice crystallization and myowater dynamics changes. Food Chemistry, 373(Pt B), 131461.

    Article  CAS  PubMed  Google Scholar 

  • Qian, S., Li, X., Wang, H., Mehmood, W., Zhong, M., Zhang, C., & Blecker, C. (2019). Effects of low voltage electrostatic field thawing on the changes in physicochemical properties of myofibrillar proteins of bovine Longissimus dorsi muscle. Journal of Food Engineering, 261, 140–149.

    Article  CAS  Google Scholar 

  • Ramallo, L. A., & Mascheroni, R. H. (2010). Dehydrofreezing of pineapple. Journal of Food Engineering, 99(3), 269–275.

    Article  Google Scholar 

  • Rastogi, N. K. (2012). Recent trends and developments in infrared heating in food processing. Critical Reviews in Food Science and Nutrition, 52(9), 737–760.

    Article  CAS  PubMed  Google Scholar 

  • Reyes-Villagrana, R. A., Huerta-Jimenez, M., Salas-Carrazco, J. L., Carrillo-Lopez, L. M., Alarcon-Rojo, A. D., Sanchez-Vega, R., & Garcia-Galicia, I. A. (2020). High-intensity ultrasonication of rabbit carcases: A first glance into a small-scale model to improve meat quality traits. Italian Journal of Animal Science, 19(1), 544–550.

    Article  CAS  Google Scholar 

  • Sun, Q., Chen, Q., Xia, X., Kong, B., & Diao, X. (2019a). Effects of ultrasound-assisted freezing at different power levels on the structure and thermal stability of common carp (Cyprinus carpio) proteins. Ultrasonics Sonochemistry, 54, 311–320.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Y., Zhang, M., Bhandari, B., & Yang, C. H. (2019b). Ultrasound treatment of frozen crayfish with chitosan nano-composite water-retaining agent: Influence on cryopreservation and storage qualities. Food Research International, 126, 108670.

    Article  CAS  PubMed  Google Scholar 

  • Tang, J., Zhang, H., Tian, C., & Shao, S. (2020). Effects of different magnetic fields on the freezing parameters of cherry. Journal of Food Engineering, 278.

  • Thorarinsdottir, K. A., Arason, S., Geirsdottir, M., Bogason, S. G., & Kristbergsson, K. (2002). Changes in myofibrillar proteins during processing of salted cod (Gadus morhua) as determined by electrophoresis and differential scanning calorimetry. Food Chemistry, 77, 377–385.

    Article  CAS  Google Scholar 

  • Wang, R., Zhang, M., & Mujumdar, A. S. (2010). Effect of osmotic dehydration on microwave freeze-drying characteristics and quality of potato chips. Drying Technology, 28(6), 798–806.

    Article  CAS  Google Scholar 

  • Wang, X., Muhoza, B., Wang, X., Feng, T., Xia, S., & Zhang, X. (2019). Comparison between microwave and traditional water bath cooking on saltiness perception, water distribution and microstructure of grass carp meat. Food Research International, 125, 108521.

    Article  PubMed  Google Scholar 

  • Wu, X., Song, X., Qiu, Z., & He, Y. (2016). Mapping of TBARS distribution in frozen-thawed pork using NIR hyperspectral imaging. Meat Science, 113, 92–96.

    Article  CAS  PubMed  Google Scholar 

  • Wu, X. -f, Zhang, M., & Bhandari, B. (2019a). A novel infrared freeze drying (IRFD) technology to lower the energy consumption and keep the quality of Cordyceps militaris. Innovative Food Science & Emerging Technologies, 54, 34–42.

    Article  CAS  Google Scholar 

  • Wu, X. -F., Zhang, M., Mujumdar, A. S., & Yang, C. -H. (2019b). Effect of ultrasound-assisted osmotic dehydration pretreatment on the infrared drying of Pakchoi Stems. Drying Technology, 38(15), 2015–2026.

    Article  CAS  Google Scholar 

  • Xanthakis, E., Havet, M., Chevallier, S., Abadie, J., & Le-Bail, A. (2013). Effect of static electric field on ice crystal size reduction during freezing of pork meat. Innovative Food Science & Emerging Technologies, 20, 115–120.

    Article  Google Scholar 

  • Xia, X., Kong, B., Liu, J., Diao, X., & Liu, Q. (2012). Influence of different thawing methods on physicochemical changes and protein oxidation of porcine longissimus muscle. LWT - Food Science and Technology, 46(1), 280–286.

    Article  CAS  Google Scholar 

  • Xie, Y., Zhou, K., Chen, B., Wang, Y., Nie, W., Wu, S., Wang, W., Li, P., & Xu, B. (2021). Applying low voltage electrostatic field in the freezing process of beef steak reduced the loss of juiciness and textural properties. Innovative Food Science & Emerging Technologies, 68.

  • Xiong, Y., Zhang, P., Warner, R. D., Hossain, M. N., Leonard, W., & Fang, Z. (2022). Effect of sorghum bran incorporation on the physicochemical and microbial properties of beef sausage during cold storage. Food Control, 132.

  • Xu, B. -g, Zhang, M., Bhandari, B., Cheng, X. -f, & Sun, J. (2015). Effect of ultrasound immersion freezing on the quality attributes and water distributions of wrapped red radish. Food and Bioprocess Technology, 8(6), 1366–1376.

    Article  Google Scholar 

  • Xu, D., Wang, Y., Jiao, N., Qiu, K., Zhang, X., Wang, L., Wang, L., & Yin, J. (2020). The coordination of dietary valine and isoleucine on water holding capacity, pH value and protein solubility of fresh meat in finishing pigs. Meat Science, 163, 108074.

    Article  CAS  PubMed  Google Scholar 

  • You, Y., Her, J. -Y., Shafel, T., Kang, T., & Jun, S. (2020). Supercooling preservation on quality of beef steak. Journal of Food Engineering, 274.

  • Zhang, M., Tang, J., Mujumdar, A. S., & Wang, S. (2006). Trends in microwave-related drying of fruits and vegetables. Trends in Food Science & Technology, 17(10), 524–534.

    Article  CAS  Google Scholar 

  • Zhu, Z., Chen, Z., Zhou, Q., Sun, D. -W., Chen, H., Zhao, Y., Zhou, W., Li, X., & Pan, H. (2018). Freezing efficiency and quality attributes as affected by voids in plant tissues during ultrasound-assisted immersion freezing. Food and Bioprocess Technology, 11(9), 1615–1626.

    Article  CAS  Google Scholar 

Download references

Funding

We acknowledge the financial support from Key R&D projects of Xinjiang Uygur Autonomous Region of China (No. 2020B02017-1), Jiangsu Province Key Laboratory Project of Advanced Food Manufacturing Equipment and Technology (No. FMZ202003), the 111 Project (BP0719028), the Jiangsu Province (China) “Collaborative Innovation Center for Food Safety and Quality Control” Industry Development Program, and the National First-Class Discipline Program of Food Science and Technology (No. JUFSTR20180205), all of which enabled us to carry out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, R., Zhang, M. & Fang, Z. A Novel Synergistic Freezing Assisted by Infrared Pre-dehydration Combined with Magnetic Field: Effect on Freezing Efficiency and Thawed Product Qualities of Beef. Food Bioprocess Technol 15, 1392–1405 (2022). https://doi.org/10.1007/s11947-022-02825-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-022-02825-0

Keywords

Navigation