Skip to main content
Log in

Cinnamaldehyde-Loaded Nanostructured Lipid Carriers Extend the Shelf Life of Date Palm Fruit

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The effect of free cinnamaldehyde (CA) and CA-loaded nanostructured lipid carriers (NLC) on the post-harvest quality of Mazafati date as a soft date cultivar was evaluated. Date fruits were immersed in sodium alginate (SA) solution alone or incorporated with 1000 and 2000 ppm free CA or CA-loaded NLC, then packed in polyethylene bags and stored for 180 days at 4 and 25 °C. The weight loss and the variations of pH, titratable acidity, and total soluble solids of the coated samples containing free CA and CA-loaded NLC were significantly lower than the treated sample with distilled water as control at the end of the storage period. The CA-loaded NLC treatments reduced the weight loss of the samples stored at 4 and 25 °C respectively by 32.7% and 55.1%, compared to the control. The total sugar content (TSC) significantly decreased, but reducing sugar content (RSC) increased in all samples during the storage period. The TSC and RSC of the samples treated with 2000 ppm CA-loaded NLC (stored at 4 °C) were 15.2% higher and 7.0% lower than the control, respectively. Total bacteria and fungi counts in the treated CA-loaded NLC samples were about 3.5 log CFU/g less than the control. The use of free CA or CA-loaded NLC, especially 2000 ppm CA-loaded NLC, improved the sensory attributes of the date samples. Overall, it can be concluded that edible coatings containing CA, especially CA-loaded NLC, can extend the shelf life of date fruit without any undesirable impacts on sensory attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abu-Shama, H. S., Abou-Zaid, F. O. F., & El-Sayed, E. Z. (2020). Effect of using edible coatings on fruit quality of Barhi date cultivar. Scientia Horticulturae, 265, 109262. https://doi.org/10.1016/j.scienta.2020.109262.

  • Afshari Jouybari, H., & Farahnaky, A. (2011). Accelerated ripening of Mazafati date by hot water, acetic acid and sodium chloride solutions. Iranian Journal of Food Science and Technology, 8(30), 45–52.

    Google Scholar 

  • Al-Asmari, F., Nirmal, N., Chaliha, M., Williams, D., Mereddy, R., Shelat, K., & Sultanbawa, Y. (2017). Physico-chemical characteristics and fungal profile of four Saudi fresh date (Phoenix dactylifera L.) cultivars. Food Chemistry, 221, 644–649.

    Article  CAS  PubMed  Google Scholar 

  • Al-Farsi, M., Alasalvar, C., Morris, A., Baron, M., & Shahidi, F. (2005). Comparison of antioxidant activity, anthocyanins, carotenoids, and phenolics of three native fresh and sun-dried date (Phoenix dactylifera L.) varieties grown in Oman. Journal of Agricultural and Food Chemistry, 53(19), 7592–7599.

    Article  CAS  PubMed  Google Scholar 

  • Ali, A., Chow, W. L., Zahid, N., & Ong, M. K. (2014). Efficacy of propolis and cinnamon oil coating in controlling post-harvest anthracnose and quality of chilli (Capsicum annuum L.) during cold storage. Food and Bioprocess Technology, 7(9), 2742–2748.

    Article  CAS  Google Scholar 

  • Allende, A., McEvoy, J. L., Luo, Y., Artes, F., & Wang, C. Y. (2006). Effectiveness of two-sided UV-C treatments in inhibiting natural microflora and extending the shelf-life of minimally processed ‘Red Oak Leaf’ lettuce. Food Microbiology, 23(3), 241–249.

    Article  CAS  PubMed  Google Scholar 

  • Aloui, H., Khwaldia, K., Licciardello, F., Mazzaglia, A., Muratore, G., Hamdi, M., & Restuccia, C. (2014). Efficacy of the combined application of chitosan and Locust Bean Gum with different citrus essential oils to control postharvest spoilage caused by Aspergillus flavus in dates. International Journal of Food Microbiology, 170, 21–28.

    Article  CAS  PubMed  Google Scholar 

  • AOAC (2000). Official methods of analysis of the Association of Official Analytical Chemists, 16th) ed. Washington D.C.

  • Ayala-Zavala, J. F., Silva-Espinoza, B. A., Cruz-Valenzuela, M. R., Leyva, J. M., Ortega-Ramírez, L. A., Carrazco-Lugo, D. K., Pérez-Carlón, J. J., Melgarejo-Flores, B. G., González-Aguilar, G. A., & Miranda, M. R. A. (2013). Pectin–cinnamon leaf oil coatings add antioxidant and antibacterial properties to fresh-cut peach. Flavour and Fragrance Journal, 28(1), 39–45.

    Article  CAS  Google Scholar 

  • Baloch, M. K., Saleem, S. A., Baloch, A. K., & Baloch, W. A. (2006). Impact of controlled atmosphere on the stability of Dhakki dates. LWT- Food Science and Technology, 39(6), 671–676.

    Article  CAS  Google Scholar 

  • Dan, N. (2016). Transport and release in nano-carriers for food applications. Journal of Food Engineering, 175, 136–144.

    Article  CAS  Google Scholar 

  • Dehghan-Shoar, Z., Hamidi-Esfahani, Z., & Abbasi, S. (2010). Effect of temperature and modified atmosphere on quality preservation of sayer date fruits (Phoenix dactylifera L.). Journal of Food Processing and Preservation, 34(2), 323–334.

    Article  CAS  Google Scholar 

  • Dhall, R. K. (2013). Advances in edible coatings for fresh fruits and vegetables: A review. Critical Reviews in Food Science and Nutrition, 53(5), 435–450.

    Article  CAS  PubMed  Google Scholar 

  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356.

    Article  CAS  Google Scholar 

  • FAOSTAT (2018). Food and Agriculture Organization. [Online]. Available: http://www.fao.org/faostat/en/#data/QC. [Accessed 24 Aug 2020].

  • FDA (2019). Food additive status list. [Online]. Available: https://www.fda.gov/food/food-additives-petitions/food-additive-status-list. [Accessed 9 Apr 2021].

  • Fonseca, S. C., Oliveira, F. A. R., & Brecht, J. K. (2002). Modelling respiration rate of fresh fruits and vegetables for modified atmosphere packages: A review. Journal of Food Engineering, 52(2), 99–119.

    Article  Google Scholar 

  • Gan, Z., Huang, J., Chen, J., Nisar, M. F., & Qi, W. (2020). Synthesis and antifungal activities of cinnamaldehyde derivatives against Penicillium digitatum causing citrus green mold. Journal of Food Quality, 2020, 1–7.

    Article  CAS  Google Scholar 

  • Garcês, A., Amaral, M., Lobo, J. S., & Silva, A. (2018). Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: A review. European Journal of Pharmaceutical Sciences, 112, 159–167.

    Article  PubMed  CAS  Google Scholar 

  • García-Betanzos, C. I., Hernández-Sánchez, H., Bernal-Couoh, T. F., Quintanar-Guerrero, D., & de la Luz Zambrano-Zaragoza, M. (2017). Physicochemical, total phenols and pectin methylesterase changes on quality maintenance on guava fruit (Psidium guajava L.) coated with candeuba wax solid lipid nanoparticles-xanthan gum. Food Research International, 101, 218–227.

    Article  PubMed  CAS  Google Scholar 

  • Ghaderi-Ghahfarokhi, M., Barzegar, M., Sahari, M. A., & Azizi, M. H. (2016). Nanoencapsulation approach to improve antimicrobial and antioxidant activity of thyme essential oil in beef burgers during refrigerated storage. Food and Bioprocess Technology, 9(7), 1187–1201.

    Article  CAS  Google Scholar 

  • Guo, H., Qin, X., Wu, Y., Yu, W., Liu, J., Xi, Y., Dou, G., Wang, L., & Xiao, H. (2019). Biocontrol of gray mold of cherry tomatoes with the volatile organic monomer from Hanseniaspora uvarum, Trans-cinnamaldehyde. Food and Bioprocess Technology, 12(11), 1809–1820.

    Article  CAS  Google Scholar 

  • Han, Y., Yu, M., & Wang, L. (2018). Physical and antimicrobial properties of sodium alginate/carboxymethyl cellulose films incorporated with cinnamon essential oil. Food Packaging and Shelf Life, 15, 35–42.

    Article  Google Scholar 

  • Hosseini, F. S., Akhavan, H. R., Maghsoudi, H., Hajimohammadi-Farimani, R., & Balvardi, M. (2019). Effects of a rotational UV-C irradiation system and packaging on the shelf life of fresh pistachio. Journal of the Science of Food and Agriculture, 99(11), 5229–5238.

    Article  CAS  PubMed  Google Scholar 

  • Hosseini, S. F., Ghaderi, J., & Gómez-Guillén, M. C. (2020). trans-Cinnamaldehyde-doped quadripartite biopolymeric films: Rheological behavior of film-forming solutions and biofunctional performance of films. Food Hydrocolloids, 112, 106339. https://doi.org/10.1016/j.foodhyd.2020.106339.

  • Istúriz-Zapata, M. A., Hernández-López, M., Correa-Pacheco, Z. N., & Barrera-Necha, L. L. (2020). Quality of cold-stored cucumber as affected by nanostructured coatings of chitosan with cinnamon essential oil and cinnamaldehyde. LWT - Food Science and Technology, 123, 109089. https://doi.org/10.1016/j.lwt.2020.109089.

    Article  CAS  Google Scholar 

  • Jemni, M., Gómez, P. A., Souza, M., Chaira, N., Ferchichi, A., Otón, M., & Artés, F. (2014). Combined effect of UV-C, ozone and electrolyzed water for keeping overall quality of date palm. LWT- Food Science and Technology, 59(2), 649–655.

    Article  CAS  Google Scholar 

  • Jemni, M., Chniti, S., Harbaoui, K., Ferchichi, A., & Artés, F. (2016). Partial vacuum and active modified atmosphere packaging for keeping overall quality of dates. Journal of New Sciences, Agriculture and Biotechnology, 29(1), 1656–1665.

    Google Scholar 

  • Ji, M., Sun, X., Guo, X., Zhu, W., Wu, J., Chen, L., Wang, J., Chen, M., Cheng, C., & Zhang, Q. (2019). Green synthesis, characterization and in vitro release of cinnamaldehyde/sodium alginate/chitosan nanoparticles. Food Hydrocolloids, 90, 515–522.

    Article  CAS  Google Scholar 

  • Kapetanakou, A. E., Nestora, S., Evageliou, V., & Skandamis, P. N. (2019). Sodium alginate–cinnamon essential oil coated apples and pears: Variability of Aspergillus carbonarius growth and ochratoxin A production. Food Research International, 119, 876–885.

    Article  CAS  PubMed  Google Scholar 

  • Keivani Nahr, F., Ghanbarzadeh, B., Hamishehkar, H., & Samadi Kafil, H. (2018). Food grade nanostructured lipid carrier for cardamom essential oil: Preparation, characterization and antimicrobial activity. Journal of Functional Foods, 40, 1–8.

    Article  CAS  Google Scholar 

  • Lawless, H. T., & Heymann, H. (2010). Sensory evaluation of food: Principles and practices. Springer.

  • Manso, S., Cacho-Nerin, F., Becerril, R., & Nerín, C. (2013). Combined analytical and microbiological tools to study the effect on Aspergillus flavus of cinnamon essential oil contained in food packaging. Food Control, 30(2), 370–378.

    Article  CAS  Google Scholar 

  • Mehyar, G. F., El Assi, N. M., Alsmairat, N. G., & Holley, R. A. (2014). Effect of edible coatings on fruit maturity and fungal growth on Berhi dates. International Journal of Food Science & Technology, 49(11), 2409–2417.

    Article  CAS  Google Scholar 

  • Miller, G. (1959). Modified DNS method for reducing sugars. Analytical Chemistry, 31(3), 426–428.

    Article  CAS  Google Scholar 

  • Molamohammadi, H., Pakkish, Z., Akhavan, H.-R., & Saffari, V. R. (2020). Effect of salicylic acid incorporated chitosan coating on shelf life extension of fresh in-hull pistachio fruit. Food and Bioprocess Technology, 13(1), 121–131.

    Article  CAS  Google Scholar 

  • Molina-Calle, M., Priego-Capote, F., & de Castro, M. D. L. (2016). HS–GC/MS volatile profile of different varieties of garlic and their behavior under heating. Analytical and Bioanalytical Chemistry, 408(14), 3843–3852.

    Article  CAS  PubMed  Google Scholar 

  • Mozaffar, S., Radi, M., Amiri, S., & McClements, D. J. (2020). A new approach for drying of nanostructured lipid carriers (NLC) by spray-drying and using sodium chloride as the excipient. Journal of Drug Delivery Science and Technology, 61, 102212. https://doi.org/10.1016/j.jddst.2020.102212.

    Article  CAS  Google Scholar 

  • Muller, R., Hommoss, A., Pardeike, J., & Schmidt, C. (2007). Lipid nanoparticles (NLC) as novel carrier for cosmetics: Special features & state of commercialisation. SÖFW-Journal, 133(9), 40–48.

    Google Scholar 

  • Murmu, S. B., & Mishra, H. N. (2018). The effect of edible coating based on Arabic gum, sodium caseinate and essential oil of cinnamon and lemon grass on guava. Food Chemistry, 245, 820–828.

    Article  CAS  PubMed  Google Scholar 

  • Noshirvani, N., Ghanbarzadeh, B., Gardrat, C., Rezaei, M. R., Hashemi, M., Le Coz, C., & Coma, V. (2017). Cinnamon and ginger essential oils to improve antifungal, physical and mechanical properties of chitosan-carboxymethyl cellulose films. Food Hydrocolloids, 70, 36–45.

    Article  CAS  Google Scholar 

  • OuYang, Q., Duan, X., Li, L., & Tao, N. (2019). Cinnamaldehyde exerts its antifungal activity by disrupting the cell wall integrity of Geotrichum citri-aurantii. Frontiers in Microbiology, 10, 1-0.

  • Ozilgen, Z. S. (2019). Cooking as a chemical reaction: Culinary science with experiments. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Pongprasert, N., Sekozawa, Y., Sugaya, S., & Gemma, H. (2011). A novel postharvest UV-C treatment to reduce chilling injury (membrane damage, browning and chlorophyll degradation) in banana peel. Scientia Horticulturae, 130(1), 73–77.

    Article  CAS  Google Scholar 

  • Prakash, A., Baskaran, R., Paramasivam, N., & Vadivel, V. (2018a). Essential oil based nanoemulsions to improve the microbial quality of minimally processed fruits and vegetables: A review. Food Research International, 111, 509–523.

    Article  CAS  PubMed  Google Scholar 

  • Prakash, B., Kujur, A., Yadav, A., Kumar, A., Singh, P. P., & Dubey, N. (2018b). Nanoencapsulation: An efficient technology to boost the antimicrobial potential of plant essential oils in food system. Food Control, 89, 1–11.

    Article  CAS  Google Scholar 

  • Radi, M., Firouzi, E., Akhavan, H., & Amiri, S. (2017). Effect of gelatin-based edible coatings incorporated with Aloe vera and black and green tea extracts on the shelf life of fresh-cut oranges. Journal of Food Quality, 2017, 1–10.

    Article  CAS  Google Scholar 

  • Rana, S., Siddiqui, S., & Goyal, A. (2015). Extension of the shelf life of guava by individual packaging with cling and shrink films. Journal of Food Science and Technology, 52(12), 8148–8155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rezaei, A., Fathi, M., & Jafari, S. M. (2019). Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocolloids, 88, 146–162.

    Article  CAS  Google Scholar 

  • Saffarionpour, S. (2019). Nanoencapsulation of hydrophobic food flavor ingredients and their cyclodextrin inclusion complexes. Food and Bioprocess Technology, 12(7), 1157–1173.

    Article  CAS  Google Scholar 

  • Sedaghat Doost, A., Nikbakht Nasrabadi, M., Kassozi, V., Nakisozi, H., & Van der Meeren, P. (2020). Recent advances in food colloidal delivery systems for essential oils and their main components. Trends in Food Science & Technology, 99, 474–486.

    Article  CAS  Google Scholar 

  • Siddiq, M., Aleid, S. M., & Kader, A. A. (2014). Dates: Postharvest science, processing technology and health benefits. John Wiley & Sons.

  • Souza, M. P., Vaz, A. F., Cerqueira, M. A., Texeira, J. A., Vicente, A. A., & Carneiro-da-Cunha, M. G. (2015). Effect of an edible nanomultilayer coating by electrostatic self-assembly on the shelf life of fresh-cut mangoes. Food and Bioprocess Technology, 8(3), 647–654.

    Article  CAS  Google Scholar 

  • Sun, Q., Li, J., Sun, Y., Chen, Q., Zhang, L., & Le, T. (2020). The antifungal effects of cinnamaldehyde against Aspergillus niger and its application in bread preservation. Food Chemistry, 317, 126405. https://doi.org/10.1016/j.foodchem.2020.126405.

    Article  CAS  PubMed  Google Scholar 

  • Tamjidi, F., Shahedi, M., Varshosaz, J., & Nasirpour, A. (2018). Stability of astaxanthin-loaded nanostructured lipid carriers in beverage systems. Journal of the Science of Food and Agriculture, 98(2), 511–518.

    Article  CAS  PubMed  Google Scholar 

  • Tang, Z. X., Shi, L. E., & Aleid, S. M. (2013). Date fruit: Chemical composition, nutritional and medicinal values, products. Journal of the Science of Food and Agriculture, 93(10), 2351–2361.

    Article  CAS  PubMed  Google Scholar 

  • Tavassoli-Kafrani, E., Shekarchizadeh, H., & Masoudpour-Behabadi, M. (2016). Development of edible films and coatings from alginates and carrageenans. Carbohydrate Polymers, 137, 360–374.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Shan, T., Yuan, Y., & Yue, T. (2016). Overall quality properties of kiwifruit treated by cinnamaldehyde and citral: Microbial, antioxidant capacity during cold storage. Journal of Food Science, 81(12), H3043–H3051.

    Article  CAS  PubMed  Google Scholar 

  • Yousefi, M., Ehsani, A., & Jafari, S. M. (2019). Lipid-based nano delivery of antimicrobials to control food-borne bacteria. Advances in Colloid and Interface Science, 270, 263–277.

    Article  CAS  PubMed  Google Scholar 

  • Zambrano-Zaragoza, M., Mercado-Silva, E., Gutiérrez-Cortez, E., Cornejo-Villegas, M., & Quintanar-Guerrero, D. (2014). The effect of nano-coatings with α-tocopherol and xanthan gum on shelf-life and browning index of fresh-cut “Red Delicious” apples. Innovative Food Science & Emerging Technologies, 22, 188–196.

    Article  CAS  Google Scholar 

  • Zamuner, C. F., Dilarri, G., Bonci, L. C., Saldanha, L. L., Behlau, F., Marin, T. G., Sass, D. C., Bacci, M., & Ferreira, H. (2020). A cinnamaldehyde-based formulation as an alternative to sodium hypochlorite for post-harvest decontamination of citrus fruit. Tropical Plant Pathology, 45(6), 701–709.

    Article  Google Scholar 

  • Zarbakhsh, S., & Rastegar, S. (2019). Influence of postharvest gamma irradiation on the antioxidant system, microbial and shelf life quality of three cultivars of date fruits (Phoenix dactylifera L.). Scientia Horticulturae, 247, 275–286.

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the financial support of the project by Research and Technology Institute of Plant Production (RTIPP), Shahid Bahonar University of Kerman, Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hamid-Reza Akhavan or Mohsen Radi.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhavan, HR., Hosseini, FS., Amiri, S. et al. Cinnamaldehyde-Loaded Nanostructured Lipid Carriers Extend the Shelf Life of Date Palm Fruit. Food Bioprocess Technol 14, 1478–1489 (2021). https://doi.org/10.1007/s11947-021-02645-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-021-02645-8

Keywords

Navigation