Skip to main content
Log in

Process Optimization for Development of a Novel Water Kefir Drink with High Antioxidant Activity and Potential Probiotic Properties from Russian Olive Fruit (Elaeagnus angustifolia)

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

A Correction to this article was published on 23 January 2021

This article has been updated

Abstract

Kefir is a dairy-based probiotic beverage with high antioxidant activity, among other health benefits. To extend kefir’s beneficial health effects to non-dairy consumers, studies on kefir fermentation using alternative matrices (referred to as water kefir) are needed. As such, the purpose of this study was to formulate a novel water kefir beverage using Russian olive, as a non-dairy product with high antioxidant activity and potential probiotic properties. To this end, the Russian olive kefir water (RWK) fermentation process was optimized to maximize the total phenolic content, antioxidant activity, and microbial viability of this product. The experimental design was set using a rotatable central composite design with response surface methodology (RSM). The optimized independent variables included the substrate concentration (20–30% of Russian olive juice), fermentation time (24–48 h), and incubation temperature (20–32 °C). The optimal fermentation conditions were observed to be 31.2 °C incubation temperature, 24 h incubation time, and 30% Russian olive juice concentration. Under these conditions, the values for FRAP antioxidant activity, DPPH radical scavenging, and TPC in RWK were 0.22 (μmol FSHE/mL), 0.096 (μmol Trolox Eq/mL), and 98.32 (μg GAE/mL), and the microbial viability (of AAB, LAB, and yeasts) was 7.20, 7.06, and 7.17 log10 CFU/mL, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 23 January 2021

    A Correction to this paper has been published: <ExternalRef><RefSource>https://doi.org/10.1007/s11947-021-02583-5</RefSource><RefTarget Address="10.1007/s11947-021-02583-5" TargetType="DOI"/></ExternalRef>

References

  • Alsayadi, M., Al Jawfi, Y., Belarbi, M., & Sabri, F. Z. (2013). Antioxidant potency of water kefir. The Journal of Microbiology, Biotechnology and Food Sciences, 2(6), 2444.

    Google Scholar 

  • Alsayadi, M., Al Jawfi, Y., Belarbi, M., Soualem-Mami, Z., Merzouk, H., Sari, D. C., et al. (2014). Evaluation of anti-hyperglycemic and anti-hyperlipidemic activities of water kefir as probiotic on Streptozotocin-induced diabetic Wistar rats. Journal of Diabetes Mellitus, 4(02), 85–95.

    Article  Google Scholar 

  • AOAC (2000). Official methods of analysis of the AOAC International, Association of official analytical chemists, 17th ed. Gaithersburg, MD. 

  • Atalar, I., & Dervisoglu, M. (2015). Optimization of spray drying process parameters for kefir powder using response surface methodology. LWT- Food Science and Technology, 60(2), 751–757.

    Article  CAS  Google Scholar 

  • Athanasiadis, I., Paraskevopoulou, A., Blekas, G., & Kiosseoglou, V. (2004). Development of a novel whey beverage by fermentation with kefir granules. Effect of various treatments. Biotechnology Progress, 20(4), 1091–1095.

    Article  CAS  Google Scholar 

  • Ayed, L., Ben Abid, S., & Hamdi, M. (2017). Development of a beverage from red grape juice fermented with the Kombucha consortium. [journal article]. Annales de Microbiologie, 67(1), 111–121. https://doi.org/10.1007/s13213-016-1242-2.

    Article  CAS  Google Scholar 

  • Baú, T. R., Garcia, S., & Ida, E. I. (2013). Optimization of a fermented soy product formulation with a kefir culture and fiber using a simplex-centroid mixture design. International Journal of Food Sciences and Nutrition, 64(8), 929–935. https://doi.org/10.3109/09637486.2013.816935.

    Article  CAS  PubMed  Google Scholar 

  • Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70–76.

    Article  CAS  Google Scholar 

  • Bertazzoni, E., Donelli, G., Midtvedt, T., Nicoli, J., & Sanz, Y. (2013). Probiotics and clinical effects: is the number what counts?  Journal of Chemotherapy, (25), 193–212.

  • Bitaraf, M. S., Khodaiyan, F., Mohammadifar, M. A., & Mousavi, S. M. (2012). Application of response surface methodology to improve fermentation time and rheological properties of probiotic yogurt containing Lactobacillus reuteri. Food and Bioprocess Technology, 5(4), 1394–1401. https://doi.org/10.1007/s11947-010-0433-2.

    Article  CAS  Google Scholar 

  • Brand-Williams, W., Cuvelier, M.-E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT- Food Science and Technology, 28(1), 25–30.

    Article  CAS  Google Scholar 

  • CFIA (2019). Health claims on food labels. https://www.inspection.gc.ca/food-label-requirements/labelling/industry/health-claims-on-food-labels/eng/1392834838383/1392834887794?chap=10. Accessed May 2020.

  • Commission, C. A. (2018). Joint FAO/WHO Food Standards Programme. Codex Committee on Nutrition and Foods for Special Dietary Uses. Fortieth Session. Discussion paper on the scientific criteria for health related claims. Berlin, Germany: Codex Alimentarius Commission.

  • Corona, O., Randazzo, W., Miceli, A., Guarcello, R., Francesca, N., Erten, H., Moschetti, G., & Settanni, L. (2016). Characterization of kefir-like beverages produced from vegetable juices. LWT- Food Science and Technology, 66, 572–581.

    Article  CAS  Google Scholar 

  • Cui, X.-H., Chen, S.-J., Wang, Y., & Han, J.-R. (2013). Fermentation conditions of walnut milk beverage inoculated with kefir grains. LWT - Food Science and Technology, 50(1), 349–352. https://doi.org/10.1016/j.lwt.2012.07.043.

    Article  CAS  Google Scholar 

  • Diosma, G., Romanin, D. E., Rey-Burusco, M. F., Londero, A., & Garrote, G. L. (2014). Yeasts from kefir grains: isolation, identification, and probiotic characterization. World Journal of Microbiology and Biotechnology, 30(1), 43–53.

    Article  CAS  Google Scholar 

  • Du, X., & Myracle, A. (2018). Development and evaluation of kefir products made with aronia or elderberry juice: sensory and phytochemical characteristics. International Food Research Journal, (25), 1373–1383.

  • Ekbatan, S. S., Sleno, L., Sabally, K., Khairallah, J., Azadi, B., Rodes, L., et al. (2016). Biotransformation of polyphenols in a dynamic multistage gastrointestinal model. Food Chemistry, 204, 453–462.

    Article  Google Scholar 

  • Farzaei, M. H., Bahramsoltani, R., Abbasabadi, Z., & Rahimi, R. (2015). A comprehensive review on phytochemical and pharmacological aspects of Elaeagnus angustifolia L. The Journal of Pharmacy and Pharmacology, 67(11), 1467–1480.

    Article  CAS  Google Scholar 

  • Fiorda, Pereira, G., Thomaz-Soccol, V., Medeiros, A. P., Rakshit, S. K., & Soccol, C. R. (2016a). Development of kefir-based probiotic beverages with DNA protection and antioxidant activities using soybean hydrolyzed extract, colostrum and honey. LWT - Food Science and Technology, 68(Supplement C), 690–697. https://doi.org/10.1016/j.lwt.2016.01.003.

    Article  CAS  Google Scholar 

  • Fiorda, F., Pereira, G., Thomaz-Soccol, V., Medeiros, A. P., Rakshit, S. K., & Soccol, C. R. (2016b). Development of new potentially probiotic honey beverage fermented by kefir grains= functional properties, molecular microbiological characteristics and technological aspects. Dissertation, Federal University of Paraná. https://acervodigital.ufpr.br/handle/1884/43025.

  • Fiorda, de Melo Pereira, G. V., Thomaz-Soccol, V., Rakshit, S. K., Pagnoncelli, M. G. B., Vandenberghe, L. P. d. S., et al. (2017). Microbiological, biochemical, and functional aspects of sugary kefir fermentation - a review. Food Microbiology, 66(Supplement C), 86–95. https://doi.org/10.1016/j.fm.2017.04.004.

    Article  CAS  PubMed  Google Scholar 

  • Fonteles, T. V., Costa, M. G. M., de Jesus, A. L. T., Fontes, C. P. M. L., Fernandes, F. A. N., & Rodrigues, S. (2013). Stability and quality parameters of probiotic cantaloupe melon juice produced with sonicated juice. Food and Bioprocess Technology, 6(10), 2860–2869. https://doi.org/10.1007/s11947-012-0962-y.

    Article  CAS  Google Scholar 

  • Ghasemlou, M., Khodaiyan, F., & Gharibzahedi, S. M. T. (2012). Enhanced production of Iranian kefir grain biomass by optimization and empirical modeling of fermentation conditions using response surface methodology. Food and Bioprocess Technology, 5(8), 3230–3235. https://doi.org/10.1007/s11947-011-0575-x.

    Article  CAS  Google Scholar 

  • Gulitz., A, J. (2013). Analysis of the diversity of water kefir microbiota by culture-dependent and -independent approaches. Dissertation, Technischen Universität Munchen. http://mediatum.ub.tum.de/?id=1164224.

  • Gulitz, Stadie, J., Wenning, M., Ehrmann, M. A., & Vogel, R. F. (2011). The microbial diversity of water kefir. International Journal of Food Microbiology, 151(3), 284–288. https://doi.org/10.1016/j.ijfoodmicro.2011.09.016.

    Article  CAS  PubMed  Google Scholar 

  • Heim, K. E., Tagliaferro, A. R., & Bobilya, D. J. (2002). Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. The Journal of Nutritional Biochemistry, 13(10), 572–584.

    Article  CAS  Google Scholar 

  • Helrich, K. (1990). Official methods of analysis of the Association of Official Analytical Chemists. Association of official analytical chemists, Arlington.

  • Hole, A. S., Rud, I., Grimmer, S., Sigl, S., Narvhus, J., & Sahlstrøm, S. (2012). Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus, Lactobacillus johnsonii, and Lactobacillus reuteri. Journal of agricultural and food chemistry, 60(25), 6369–6375.

  • Hsieh, H.-H., Wang, S.-Y., Chen, T.-L., Huang, Y.-L., & Chen, M.-J. (2012). Effects of cow's and goat's milk as fermentation media on the microbial ecology of sugary kefir grains. International Journal of Food Microbiology, 157(1), 73–81.

    Article  CAS  Google Scholar 

  • Hur, S. J., Lee, S. Y., Kim, Y.-C., Choi, I., & Kim, G.-B. (2014). Effect of fermentation on the antioxidant activity in plant-based foods. Food Chemistry, 160, 346–356.

    Article  CAS  Google Scholar 

  • Huynh, N. T., Van Camp, J., Smagghe, G., & Raes, K. (2014). Improved release and metabolism of flavonoids by steered fermentation processes: a review. International Journal of Molecular Sciences, 15(11), 19369–19388. https://doi.org/10.3390/ijms151119369.

    Article  CAS  PubMed  Google Scholar 

  • Incilay, G. (2014). Volatile composition, antimicrobial and antioxidant properties of different parts from Elaeagnus angustifolia L. Journal of Essential Oil-Bearing Plants, 17(6), 1187–1202. https://doi.org/10.1080/0972060X.2014.929044.

    Article  CAS  Google Scholar 

  • ISO (1998). Microbiology of food and animal feeding stuffs – Horizontal method for the enumeration of mesophilic lactic acid bacteria – Colony count technique at 30 °C. International Standard ISO 15214:1998. International Organization for Standardization, Geneva.

  • Koh, W. Y., Utra, U., Rosma, A., Effarizah, M. E., Rosli, W. I. W., & Park, Y.-H. (2017). Development of a novel fermented pumpkin-based beverage inoculated with water kefir grains: a response surface methodology approach. Food Science and Biotechnology, 27(2), 525–535.

  • Laureys, D., & De Vuyst, L. (2014). Water kefir as a promising low-sugar probiotic fermented beverage. Archives of Public Health, 72(S1), P1.

    Article  Google Scholar 

  • Łopusiewicz, Ł., Drozłowska, E., Siedlecka, P., Mężyńska, M., Bartkowiak, A., Sienkiewicz, M., Zielińska-Bliźniewska, H., & Kwiatkowski, P. (2019). Development, characterization, and bioactivity of non-dairy kefir-like fermented beverage based on flaxseed oil cake. Foods, 8(11), 544.

    Article  Google Scholar 

  • M’hir, S., Rtibi, K., Mejri, A., Ziadi, M., Aloui, H., Hamdi, M., & Ayed, L. (2019). Development of a novel whey date beverage fermented with kefir grains using response surface methodology. Journal of Chemistry, 2019, 1218058–1218013. https://doi.org/10.1155/2019/1218058.

    Article  Google Scholar 

  • Magalhães, K. T., Pereira, G. V. M., Dias, D. R., & Schwan, R. F. (2010). Microbial communities and chemical changes during fermentation of sugary Brazilian kefir. World Journal of Microbiology and Biotechnology, 33, 1–10.

    Google Scholar 

  • Marsh, A. J., O'Sullivan, O., Hill, C., Ross, R. P., & Cotter, P. D. (2013). Sequence-based analysis of the microbial composition of water kefir from multiple sources. FEMS Microbiology Letters, 348(1), 79–85.

    Article  CAS  Google Scholar 

  • Martínez-Torres, A., Gutiérrez-Ambrocio, S., Heredia-del-Orbe, P., Villa-Tanaca, L., & Hernández-Rodríguez, C. (2017). Inferring the role of microorganisms in water kefir fermentations. International Journal of Food Science & Technology, 52(2), 559–571.

    Article  Google Scholar 

  • Melo, A., & Silva, M. A. (2014). Development of fermented and flavoured kefir milk. BMC Proceedings, 8(4), P15. https://doi.org/10.1186/1753-6561-8-S4-P15.

    Article  PubMed Central  Google Scholar 

  • Mishra, S., & Mishra, H. N. (2015). Optimization of the prebiotic & probiotic concentration and incubation temperature for the preparation of synbiotic soy yoghurt using response surface methodology. LWT - Food Science and Technology, 62(1, Part 2), 458–467. https://doi.org/10.1016/j.lwt.2014.12.003.

    Article  CAS  Google Scholar 

  • Moore, J., Cheng, Z., Hao, J., Guo, G., Liu, J.-G., Lin, C., et al. (2007). Effects of solid-state yeast treatment on the antioxidant properties and protein and fiber compositions of common hard wheat bran. Journal of Agricultural and Food Chemistry, 55(25), 10173–10182.

    Article  CAS  Google Scholar 

  • Neve, H., & Heller, K. (2002). The microflora of water kefir: a glance by scanning electron microscopy. Kieler Milchwirtschaftliche Forschungsberichte, 54(4), 337–349.

    CAS  Google Scholar 

  • Nguyen, H. T. H., Ong, L., Lefèvre, C., Kentish, S. E., & Gras, S. L. (2014). The microstructure and physicochemical properties of probiotic buffalo yoghurt during fermentation and storage: A comparison with bovine yoghurt. Food and Bioprocess Technology, 7(4), 937–953. https://doi.org/10.1007/s11947-013-1082-z.

    Article  CAS  Google Scholar 

  • Nindo, C. I., Tang, J., Powers, J. R., & Singh, P. (2005). Viscosity of blueberry and raspberry juices for processing applications. Journal of Food Engineering, 69(3), 343–350. https://doi.org/10.1016/j.jfoodeng.2004.08.025.

    Article  Google Scholar 

  • Pidoux, M. (1989). The microbial flora of sugary kefir grain (the gingerbeer plant): biosynthesis of the grain from Lactobacillus hilgardii producing a polysaccharide gel. [journal article]. MIRCEN Journal of Applied Microbiology and Biotechnology, 5(2), 223–238. https://doi.org/10.1007/bf01741847.

    Article  Google Scholar 

  • Pientaweeratch, S., Panapisal, V., & Tansirikongkol, A. (2016). Antioxidant, anti-collagenase and anti-elastase activities of Phyllanthus emblica, Manilkara zapota and silymarin: an in vitro comparative study for anti-aging applications. Pharmaceutical Biology, 54(9), 1865–1872. https://doi.org/10.3109/13880209.2015.1133658.

    Article  CAS  PubMed  Google Scholar 

  • Puerari, C., Magalhães, K. T., & Schwan, R. F. (2012). New cocoa pulp-based kefir beverages: microbiological, chemical composition and sensory analysis. Food Research International, 48(2), 634–640. https://doi.org/10.1016/j.foodres.2012.06.005.

    Article  CAS  Google Scholar 

  • Randazzo, W., Corona, O., Guarcello, R., Francesca, N., Germana, M. A., Erten, H., et al. (2016). Development of new non-dairy beverages from Mediterranean fruit juices fermented with water kefir microorganisms. Food Microbiology, 54, 40–51.

    Article  CAS  Google Scholar 

  • Rodrigues, K. L., Caputo, L. R. G., Carvalho, J. C. T., Evangelista, J., & Schneedorf, J. M. (2005). Antimicrobial and healing activity of kefir and kefiran extract. International Journal of Antimicrobial Agents, 25(5), 404–408. https://doi.org/10.1016/j.ijantimicag.2004.09.020.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues, K. L., Araújo, T. H., Schneedorf, J. M., Ferreira, C. d. S., Moraes, G. d. O. I., Coimbra, R. S., et al. (2016). A novel beer fermented by kefir enhances anti-inflammatory and anti-ulcerogenic activities found isolated in its constituents. Journal of Functional Foods, 21(Supplement C), 58–69. https://doi.org/10.1016/j.jff.2015.11.035.

    Article  CAS  Google Scholar 

  • Romero-Luna, H. E., Peredo-Lovillo, A., Hernández-Mendoza, A., Hernández-Sánchez, H., Cauich-Sánchez, P. I., Ribas-Aparicio, R. M., & Dávila-Ortiz, G. (2020). Probiotic potential of Lactobacillus paracasei CT12 isolated from water kefir grains (Tibicos). Current Microbiology, 77(10), 2584–2592.

    Article  CAS  Google Scholar 

  • Schneedorf, J.M. (2012). Kefir D’Aqua and its probiotic properties. Intech open science, Brazil, 53–76.

  • Septembre-Malaterre, A., Remize, F., & Poucheret, P. (2018). Fruits and vegetables, as a source of nutritional compounds and phytochemicals: changes in bioactive compounds during lactic fermentation. Food Research International, 104, 86–99. https://doi.org/10.1016/j.foodres.2017.09.031.

    Article  CAS  PubMed  Google Scholar 

  • Varga, Z., Pálvölgyi, M., Juhasz-Roman, M., & Toth-Markus, M. (2006). Development of therapeutic kefir-like products with low galactose content for patients with galactose intolerance. Acta Alimentaria, 35(3), 295–304.

    Article  CAS  Google Scholar 

  • Wang, Y., Guo, T., Li, J. Y., Zhou, S. Z., Zhao, P., & Fan, M. T. (2013). Four flavonoid glycosides from the pulps of Elaeagnus angustifolia and their antioxidant activities, Advanced Materials Research, 756, 16–20.

  • Zanirati, D. F., Abatemarco, M., Sandes, S. H. D. C., Nicoli, J. R., Nunes, T. C., & Neumann, E. (2015). Selection of lactic acid bacteria from Brazilian kefir grains for potential use as starter or probiotic cultures. [article]. Anaerobe, 32, 70–76. https://doi.org/10.1016/j.anaerobe.2014.12.007.

    Article  CAS  PubMed  Google Scholar 

  • Zare, F., Boye, J. I., Champagne, C. P., Orsat, V., & Simpson, B. K. (2013). Probiotic milk supplementation with pea flour: microbial and physical properties. Food and Bioprocess Technology, 6(5), 1321–1331. https://doi.org/10.1007/s11947-012-0828-3.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Mohammad Amin Mohammadifar, Dr. Clara Navarrete Román, Jorien Hattink, and the technical staff in the DTU Fermentation core (Technical University of Denmark) for their continued support.

Funding

The authors received funding for this project from the Canadian Natural Sciences and Engineering Research Council (NSERC) and the Graduate Mobility Award of McGill University, as well as the Fermentation Based Biomanufacturing initiative funded by the Novo Nordisk Fonden (grant nr. NNF17SA0031362).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pariya Darvishzadeh.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Green boxes at Figure 1a and 1b were deleted.The original online version of this article was revised: Green boxes at Figure 1a and 1b were deleted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darvishzadeh, P., Orsat, V. & Martinez, J.L. Process Optimization for Development of a Novel Water Kefir Drink with High Antioxidant Activity and Potential Probiotic Properties from Russian Olive Fruit (Elaeagnus angustifolia). Food Bioprocess Technol 14, 248–260 (2021). https://doi.org/10.1007/s11947-020-02563-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-020-02563-1

Keywords

Navigation