Skip to main content
Log in

Quantification of Selective Transport of Fructose and Glucose During Membrane Filtration of Pomegranate Juice

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Pomegranate (Punica granatum L.) is a nutrient-dense fruit with proven health-promoting effects due to the presence of polyphenols. Fructose and glucose are known as the main contributors to the juice sweetness. Pressure-driven membrane operations offer new opportunities and perspectives for efficiently recovering phenolic compounds without losing their activity. We investigated the fractionation of clarified juice with three commercial polyamide-thin film composite membranes having a molecular weight cutoff (MWCO) of 1–3.5 kDa. All selected membranes allowed to concentrate more than 80% of phenolic compounds, while glucose and fructose recovery are more than 60% and 70%, respectively. Among the studied membranes, the General Electric (GE Osmonics, USA) Desal GK membrane (MWCO 3.5 kDa) exhibits highest permeate concentration and selectivity of fructose at 18 bar, in total recycle mode. In the batch concentration mode, the permeate concentration decreases with time. The filtration process is mathematically described as a coupled phenomenon of the mass transport in the polarization layer over the membrane surface and selective transport in the membrane itself, for all three species. The model result is in good agreement with experimental observations under the total recycle and batch operation mode, for both the permeate flux and permeate concentration of three species. The recovery of glucose and fructose is in the range of 60% and 70%, respectively. The permeate is enriched with fructose, which is selectively transported over glucose using the GK membrane, whereas glucose is preferentially transported using GH membrane for the same feed solution. The selectivity of fructose increases with cross-flow rate. Maximum selectivity is obtained at the transmembrane pressure of 18 bar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Reported in the work through the illustrations.

References

  • Acosta, O., Vaillant, F., Pérez, A. M., & Dornier, M. (2014). Potential of ultrafiltration for separation and purification of ellagitannins in blackberry (Rubus adenotrichusSchltdl.) juice. Separation and Purification Technology, 125, 120–125.

    CAS  Google Scholar 

  • Bagci, P. O. (2014). Effective clarification of pomegranate juice: A comparative study of pretreatment methods and their influence on ultrafiltration flux. Journal of Food Engineering, 141, 58–64.

    CAS  Google Scholar 

  • Bhattacharjee, C., Saxena, V. K., & Dutta, S. (2017). Fruit juice processing using membrane technology: A review. Innovative Food Science and Emerging Technologies, 43, 136–153.

    CAS  Google Scholar 

  • Blatt, W. F., Dravid, A., Michaels, A. S., & Nelsen, L. (1970). Solute polarization and cake formation in membrane ultrafiltration: Causes, consequences, and control techniques. In Membrane Science and Technology (pp. 47–97). Boston: Springer.

    Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Analytical Biochemistry, 72(1-2), 248–254.

    CAS  PubMed  Google Scholar 

  • Brazinha, C., Cadima, M., & Crespo, J. G. (2015). Valorisation of spent coffee through membrane processing. Journal of Food Engineering, 149, 123–130.

    CAS  Google Scholar 

  • Cassano, A., Drioli, E., Galaverna, G., Marchelli, R., Di Silvestro, G., & Cagnasso, P. (2003). Clarification and concentration of citrus and carrot juices by integrated membrane processes. Journal of Food Engineering, 57(2), 153–163.

    Google Scholar 

  • Cassano, A., Donato, L., & Drioli, E. (2007). Ultrafiltration of kiwifruit juice: Operating parameters, juice quality and membrane fouling. Journal of Food Engineering, 79(2), 613–621.

    CAS  Google Scholar 

  • Cassano, A., Tasselli, F., Conidi, C., & Drioli, E. (2009). Ultrafiltration of Clementine mandarin juice by hollow fibre membranes. Desalination, 241(1-3), 302–308.

    CAS  Google Scholar 

  • Cassano, A., Conidi, C., & Drioli, E. (2010). Physico-chemical parameters of cactus pear (Opuntia ficus-indica) juice clarified by microfiltration and ultrafiltration processes. Desalination, 250(3), 1101–1104.

    CAS  Google Scholar 

  • Cassano, A., Conidi, C., & Drioli, E. (2011). Clarification and concentration of pomegranate juice (Punica granatum L.) using membrane processes. Journal of Food Engineering, 107(3-4), 366–373.

    CAS  Google Scholar 

  • Cassano, A., Conidi, C., & Tasselli, F. (2015). Clarification of pomegranate juice (Punica Granatum L.) by hollow fibre membranes: Analyses of membrane fouling and performance. Journal of Chemical Technology & Biotechnology, 90(5), 859–866.

    CAS  Google Scholar 

  • Cassano, A., Conidi, C., Ruby-Figueroa, R., & Castro-Muñoz, R. (2018). Nanofiltration and tight ultrafiltration membranes for the recovery of polyphenols from agro-food by-products. International Journal of Molecular Sciences, 19(2), 351.

    PubMed Central  Google Scholar 

  • Castro-Muñoz, R., Conidi, C., & Cassano, A. (2019). Membrane-based technologies for meeting the recovery of biologically active compounds from foods and their by-products. Critical Reviews in Food Science and Nutrition, 59(18), 2927–2948.

    PubMed  Google Scholar 

  • Chakraborty, S., Das, C., & Uppaluri, R. (2020). Feasibility of low-cost kaolin–based ceramic membranes for organic Lagernaria siceraria juice production. Food and Bioprocess Technology, 13(6), 1009–1023.

    CAS  Google Scholar 

  • Conidi, C., Cassano, A., Caiazzo, F., & Drioli, E. (2017). Separation and purification of phenolic compounds from pomegranate juice by ultrafiltration and nanofiltration membranes. Journal of Food Engineering, 195, 1–13.

    CAS  Google Scholar 

  • Conidi, C., Drioli, E., & Cassano, A. (2020). Perspective of membrane technology in pomegranate juice processing: A review. Foods, 9(7), 889.

    CAS  PubMed Central  Google Scholar 

  • Davis, W. B. (1947). Determination of flavanones in citrus fruits. Analytical Chemistry, 19(7), 476–477.

    CAS  Google Scholar 

  • De Barros, S. T. D., Andrade, C. M. G., Mendes, E. S., & Peres, L. (2003). Study of fouling mechanism in pineapple juice clarification by ultrafiltration. Journal of Membrane Science, 215(1-2), 213–224.

    Google Scholar 

  • De, S., Mondal, S., & Banerjee, S. (2013). Stevioside: Technology, Applications and Health. Oxford: Wiley Blackwell. https://doi.org/10.1002/9781118350720.

    Book  Google Scholar 

  • Domingues, R. C. C., Ramos, A. A., Cardoso, V. L., & Reis, M. H. M. (2014). Microfiltration of passion fruit juice using hollow fibre membranes and evaluation of fouling mechanisms. Journal of Food Engineering, 121, 73–79.

    CAS  Google Scholar 

  • Farahmand, M., Golmakani, M. T., Mesbahi, G., & Farahnaky, A. (2017). Investigating the effects of large-scale processing on phytochemicals and antioxidant activity of pomegranate juice. Journal of Food Processing and Preservation, 41(2), e12792.

    Google Scholar 

  • Gabrić, D., Barba, F., Roohinejad, S., Gharibzahedi, S. M. T., Radojčin, M., Putnik, P., & Bursać Kovačević, D. (2018). Pulsed electric fields as an alternative to thermal processing for preservation of nutritive and physicochemical properties of beverages: A review. Journal of Food Process Engineering, 41(1), e12638.

    Google Scholar 

  • Ghosh, P., Pradhan, R. C., Mishra, S., & Rout, P. K. (2018). Quantification and concentration of anthocyanidin from Indian blackberry (Jamun) by combination of ultra- and nano-filtrations. Food and Bioprocess Technology, 11(12), 2194–2203.

    CAS  Google Scholar 

  • Gilewicz-Łukasik, B., Koter, S., & Kurzawa, J. (2007). Concentration of anthocyanins by the membrane filtration. Separation and Purification Technology, 57(3), 418–424.

    Google Scholar 

  • Gulec, H. A., Bagci, P. O., & Bagci, U. (2017). Clarification of apple juice using polymeric ultrafiltration membranes: A comparative evaluation of membrane fouling and juice quality. Food and Bioprocess Technology, 10(5), 875–885.

    CAS  Google Scholar 

  • Incropera, F. P., DeWitt, D. P., Bergman, T. L., & Lavine, A. S. (2007). Fundamentals of heat and mass transfer (6th ed.). Hoboken, New Jersey: John Wiley & Sons.

    Google Scholar 

  • Jain, A., Sengupta, S., & De, S. (2018). Fundamental understanding of fouling mechanisms during microfiltration of bitter gourd (Momordica charantia) extract and their dependence on operating conditions. Food and Bioprocess Technology, 11(5), 1012–1026.

    CAS  Google Scholar 

  • Jakobek, L. (2015). Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chemistry, 175, 556–567.

    CAS  PubMed  Google Scholar 

  • Johanningsmeier, S. D., & Harris, G. K. (2011). Pomegranate as a functional food and nutraceutical source. Annual Review of Food Science and Technology, 2(1), 181–201.

    CAS  PubMed  Google Scholar 

  • Johnston, S. T., & Deen, W. M. (1999). Hindered convection of proteins in agarose gels. Journal of Membrane Science, 153(2), 271–279.

    CAS  Google Scholar 

  • Katchalsky, A., & Curran, P. F. (1965). Nonequilibrium thermodynamics in biophysics (pp. 113–180). Cambridge: Harvard University Press.

    Google Scholar 

  • Kujawa, J., Guillen-Burrieza, E., Arafat, H. A., Kurzawa, M., & W., A. (2015). Raw juice concentration by osmotic membrane distillation process with hydrophobic polymeric membranes. Food and Bioprocess Technology, 8(10), 2146–2158.

    CAS  Google Scholar 

  • Kulkarni, A. P., & Aradhya, S. M. (2005). Chemical changes and antioxidant activity in pomegranate arils during fruit development. Food Chemistry, 93(2), 319–324.

    CAS  Google Scholar 

  • Luo, J., Guo, S., Wu, Y., & Wan, Y. (2018). Separation of sucrose and reducing sugar in cane molasses by nanofiltration. Food and Bioprocess Technology, 11(5), 913–925.

    CAS  Google Scholar 

  • Matta, V. M., Moretti, R. H., & Cabral, L. M. C. (2004). Microfiltration and reverse osmosis for clarification and concentration of acerola juice. Journal of Food Engineering, 61(3), 477–482.

    Google Scholar 

  • Mirsaeedghazi, H., Emam-Djomeh, Z., Mousavi, S. M., Ahmadkhaniha, R., & Shafiee, A. (2010). Effect of membrane clarification on the physicochemical properties of pomegranate juice. International Journal of Food Science and Technology, 45(7), 1457–1463.

    CAS  Google Scholar 

  • Mondal, S., & De, S. (2012). Modeling of cross flow ultrafiltration of stevia extract in a rectangular cell. Journal of Food Engineering, 112(4), 326–337.

    Google Scholar 

  • Mondal, S., Cassano, A., Tasselli, F., & De, S. (2011). A generalized model for clarification of fruit juice during ultrafiltration under total recycle and batch mode. Journal of Membrane Science, 366(1-2), 295–303.

    CAS  Google Scholar 

  • Mondal, S., Cassano, A., & De, S. (2014). Modeling of gel layer-controlled fruit juice microfiltration in a radial cross flow cell. Food and Bioprocess Technology, 7(2), 355–370.

    Google Scholar 

  • Mondal, S., Cassano, A., Conidi, C., & De, S. (2016). Modeling of gel layer transport during ultrafiltration of fruit juice with non-Newtonian fluid rheology. Food and Bioproducts Processing, 100, 72–84.

    CAS  Google Scholar 

  • Montesdeoca, V. A., Van der Padt, A., Boom, R. M., & Janssen, A. E. (2016). Modelling of membrane cascades for the purification of oligosaccharides. Journal of Membrane Science, 520, 712–722.

    Google Scholar 

  • Mousavinejad, G., Emam-Djomeh, Z., Rezaei, K., & Khodaparast, M. H. H. (2009). Identification and quantification of phenolic compounds and their effects on antioxidant activity in pomegranate juices of eight Iranian cultivars. Food Chemistry, 115(4), 1274–1278.

    CAS  Google Scholar 

  • Nourbakhsh, H., Emam-Djomeh, Z., Omid, M., Mirsaeedghazi, H., & Moini, S. (2014). Prediction of red plum juice permeate flux during membrane processing with ANN optimized using RSM. Computers and Electronics in Agriculture, 102, 1–9.

    Google Scholar 

  • Opara, L. U., Al-Ani, M. R., & Al-Shuaibi, Y. S. (2009). Physico-chemical properties, vitamin C content, and antimicrobial properties of pomegranate fruit (Punica granatum L.). Food and Bioprocess Technology, 2(3), 315–321.

    CAS  Google Scholar 

  • Opong, W. S., & Zydney, A. L. (1991). Diffusive and convective protein transport through asymmetric membranes. AICHE Journal, 37(10), 1497–1510.

    CAS  Google Scholar 

  • Pap, N., Mahosenaho, M., Pongrácz, E., Mikkonen, H., Jaakkola, M., Virtanen, V., Myllykoski, L., Horváth-Hovorka, Z., Hodúr, C., Vatai, G., & Keiski, R. L. (2012). Effect of ultrafiltration on anthocyanin and flavonol content of black currant juice (Ribes nigrum L.). Food and Bioprocess Technology, 5(3), 921–928.

    CAS  Google Scholar 

  • Rai, P., Majumdar, G. C., Sharma, G., Gupta, S. D., & De, S. (2006). Effect of various cutoff membranes on permeate flux and quality during filtration of mosambi (Citrus sinensis (L.) Osbeck) juice. Food and Bioproducts Processing, 84(3), 213–219.

    CAS  Google Scholar 

  • Rai, C., Rai, P., Majumdar, G. C., De, S., & Dasgupta, S. (2010). Mechanism of permeate flux decline during microfiltration of watermelon (Citrullus lanatus) juice. Food and Bioprocess Technology, 3(4), 545–553.

    Google Scholar 

  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. A. (1999). Antioxidant activity applying and improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231–1237.

    CAS  PubMed  Google Scholar 

  • Ribeiro, A. C., Ortona, O., Simoes, S. M., Santos, C. I., Prazeres, P. M., Valente, A. J., Lobo, V. M. M., & Burrows, H. D. (2006). Binary mutual diffusion coefficients of aqueous solutions of sucrose, lactose, glucose, and fructose in the temperature range from (298.15 to 328.15) K. Journal of Chemical & Engineering Data, 51(5), 1836–1840.

    CAS  Google Scholar 

  • Ruby-Figueroa, R., Saavedra, J., Bahamonde, N., & Cassano, A. (2017). Permeate flux prediction in the ultrafiltration of fruit juices by ARIMA models. Journal of Membrane Science, 524, 108–116.

    CAS  Google Scholar 

  • Ruiz-Rodríguez, B. M., Morales, P., Fernández-Ruiz, V., Sánchez-Mata, M. C., Cámara, M., Díez-Marqués, C., Pardo-de-Santayana, M., Molina, M., & Tardío, J. (2011). Valorization of wild strawberry-tree fruits (Arbutus unedo L.) through nutritional assessment and natural production data. Food Research International, 44(5), 1244–1253.

    Google Scholar 

  • Sagu, S. T., Karmakar, S., Nso, E. J., Kaseu, C., & De, S. (2014). Ultrafiltration of banana (Musa acuminata) juice using hollow fibers for enhanced shelf life. Food and Bioprocess Technology, 7(9), 2711–2722.

    CAS  Google Scholar 

  • Saleh, Z. S., Stanley, R., & Wibisono, R. (2006). Separation and concentration of health compounds by membrane filtration. International Journal of Food Engineering, 2, 4.

    Google Scholar 

  • Schmidt, J. M., Greve-Poulsen, M., Damgaard, H., Hammershoj, M., & Larsen, L. B. (2016). Effect of membrane material on the separation of proteins and polyphenol oxidase in ultrafiltration of potato fruit juice. Food and Bioprocess Technology, 9(5), 822–829.

    CAS  Google Scholar 

  • Severcan, S. S., Uzal, N., & Kahraman, K. (2020). Clarification of apple juice using new generation nanocomposite membranes fabricated with TiO2 and Al2O3 nanoparticles. Food and Bioprocess Technology, 13(3), 391–403.

    CAS  Google Scholar 

  • Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteau reagent. Methods in Enzymology, 299, 152–178.

    CAS  Google Scholar 

  • Vladisavljević, G. T., Vukosavljević, P., & Bukvić, B. (2003). Permeate flux and fouling resistance in ultrafiltration of depectinized apple juice using ceramic membranes. Journal of Food Engineering, 60(3), 241–247.

    Google Scholar 

  • Yao, L., Qin, Z., Chen, Q., Zhao, M., Zhao, H., Ahmad, W., Fan, L., & Zhao, L. (2018). Insights into the nanofiltration separation mechanism of monosaccharides by molecular dynamics simulation. Separation and Purification Technology, 205, 48–57.

    CAS  Google Scholar 

  • Yilmaz, E., & Bagci, P. O. (2019). Ultrafiltration of broccoli juice using polyethersulfone membrane: fouling analysis and evaluation of the juice quality. Food and Bioprocess Technology, 12(8), 1273–1283.

    CAS  Google Scholar 

  • Zhenzhou, Z., Luo, X., Yin, F., Li, S., & He, J. (2018). Clarification of Jerusalem artichoke extract using ultra-filtration: Effect of membrane pore size and operation conditions. Food and Bioprocess Technology, 11, 864–873.

    Google Scholar 

  • Zhu, C., & Liu, X. (2013). Optimization of extraction process of crude polysaccharides from pomegranate peel by response surface methodology. Carbohydrate Polymers, 92(2), 1197–1202.

    CAS  PubMed  Google Scholar 

  • Zydney, A. L. (1997). Stagnant film model for concentration polarization in membrane systems. Journal of Membrane Science, 130(1-2), 275–281.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirshendu De.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, S., Cassano, A., Conidi, C. et al. Quantification of Selective Transport of Fructose and Glucose During Membrane Filtration of Pomegranate Juice. Food Bioprocess Technol 14, 272–286 (2021). https://doi.org/10.1007/s11947-020-02558-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-020-02558-y

Keywords

Navigation