Skip to main content
Log in

Application of Fuzzy Logic in Sensory Evaluation of Food Products: a Comprehensive Study

  • Review
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Sensory evaluation plays a vital role in the assessment of acceptance of novel food products and preferences for different cuisines. This process provides significant and valuable information to the food-processing industries and food scientists regarding the sensory quality of food products. Traditional techniques generally employed for the sensory evaluation assess only in a qualitative sense and cannot perform a precise quantitative assessment. However, recently, novel techniques such as fuzzy set theory have been effectively used in assessing the sensory characteristics of various traditional as well as novel food products developed through fortification and modified processing techniques. The aim of the fuzzy set theory is to treat ambiguous phenomena mathematically and express the degree of incomprehensibility in human thinking along with connecting it to a real number. Furthermore, fuzzy logic mimics human behavior for reasoning and decision-making. In fuzzy modeling, linguistic entities such as “not satisfactory, fair, medium, good and excellent” are employed for describing the sensory attributes of food products (including color, aroma, taste, texture, and mouthfeel) obtained through subjective evaluation, which are combined with the accurate and precise data attained through objective evaluation to draw conclusions regarding acceptance, rejection, and ranking, along with strong and weak characteristics of the food under study. This analysis also assists in finding the preference of quality attributes and sets criteria for acceptance or rejection of the newly developed foods. This review provides an overview of the application of fuzzy concepts to the sensory evaluation of traditional and novel food products (often enriched with nutraceuticals) in the food industry, along with the corresponding advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alavi, N. (2012). Date grading using rule-based fuzzy inference system. Journal of Agricultural Technology, 8, 1243–1254.

    Google Scholar 

  • Asnaashari, E., Asnaashari, M., Ehtiati, A., & Farahmandfar, R. (2015). Comparison of adaptive neuro-fuzzy inference system and artificial neural networks (MLP and RBF) for estimation of oxidation parameters of soybean oil added with curcumin. Journal of Food Measurement and Characterization, 9(2), 215–224.

    Google Scholar 

  • Balthazar, C. F., Silva, H. L. A., Celeguini, R. M. S., Santos, R., Pastore, G. M., Junior, C. A. C., Freitas, M. Q., Nogueira, L. C., Silva, M. C., & Cruz, A. G. (2015). Effect of galactooligosaccharide addition on the physical, optical, and sensory acceptance of vanilla ice cream. Journal of Dairy Science, 98(7), 4266–4272.

    CAS  PubMed  Google Scholar 

  • Basak, S. (2018). The use of fuzzy logic to determine the concentration of betel leaf essential oil and its potency as a juice preservative. Food Chemistry, 240, 1113–1120.

    CAS  PubMed  Google Scholar 

  • Beriain, M., Chasco, J., & Lizaso, G. (2000). Relationship between biochemical and sensory quality characteristics of different commercial brands of salchichon. Food Control, 11(3), 231–237.

    CAS  Google Scholar 

  • Birle, S., Hussein, M. A., & Becker, T. (2013). Fuzzy logic control and soft sensing applications in food and beverage processes. Food Control, 29, 254–269.

    Google Scholar 

  • Chakraborty, D. (2001). Structural quantization of vagueness in linguistic expert opinions in an evaluation programme. Fuzzy Sets and Systems, 119(1), 171–186.

    Google Scholar 

  • Chakraborty, D., Das, S., & Das, H. (2013). Aggregation of sensory data using fuzzy logic for sensory quality evaluation of food. Journal of Food Science and Technology, 50(6), 1088–1096.

    Google Scholar 

  • Chakraborty, S., Rao, P. S., & Mishra, H. N. (2015). Response surface optimization of process parameters and fuzzy analysis of sensory data of high pressure–temperature treated pineapple puree. Journal of Food Science, 80(8), E1763–E1775.

    CAS  PubMed  Google Scholar 

  • Chanadang, S., Chambers, E. I., Kayanda, R., Alavi, S., & Msuya, W. (2018). Novel fortified blended foods: preference testing with infants and young children in Tanzania and descriptive sensory analysis. Journal of Food Science, 83(9), 2343–2350.

    CAS  PubMed  Google Scholar 

  • Curt, C., Hossenlopp, J., Perrot, N., & Trystram, G. (2002). Dry sausage ripening control integration of sensory-related properties. Food Control, 13(3), 151–159.

    Google Scholar 

  • Das, H. (2005). Sensory evaluation using fuzzy logic. In Food processing operations analysis (pp. 383–402). NewDelhi: Asian Books.

    Google Scholar 

  • Davidson, V., & Sun, W. (1998). A linguistic method for sensory assessment. Journal of Sensory Studies, 13(3), 315–330.

    Google Scholar 

  • Davidson, V. J., Ryks, J., & Chu, T. (2001). Fuzzy models to predict consumer ratings for biscuits based on digital image features. IEEE Transactions on Fuzzy Systems, 9(1), 62–67.

    Google Scholar 

  • Debjani, C., Das, S., & Das, H. (2013). Aggregation of sensory data using fuzzy logic for sensory quality evaluation of food. Journal of Food Science and Technology, 50(6), 1088–1096.

    PubMed  Google Scholar 

  • Deliza, R., MacFie, H., & Hedderley, D. (2005). The consumer sensory perception of passion-fruit juice using free-choice profiling. Journal of Sensory Studies, 20(1), 17–27.

    Google Scholar 

  • Dubois, D. J., Prade, H., & Yager, R. R. (2014). Readings in fuzzy sets for intelligent systems. Morgan Kaufmann.

  • Enneking, U., Neumann, C., & Henneberg, S. (2007). How important intrinsic and extrinsic product attributes affect purchase decision. Food Quality and Preference, 18(1), 133–138.

    Google Scholar 

  • Esmerino, E. A., Paixão, J. A., Cruz, A. G., Garitta, L., Hough, G., & Bolini, H. M. A. (2015). Survival analysis: a consumer-friendly method to estimate the optimum sucrose level in probiotic petit suisse. Journal of Dairy Science, 98(11), 7544–7551.

    CAS  PubMed  Google Scholar 

  • Espinilla, M., Estrella, F., & Martinez, L. (2015). Fuzzy linguistic sensory evaluation model for olive oil with unbalanced linguistic scale. In: Espania: University of Jaen.

  • Faisal, S., Chakraborty, S., Devi, W., Hazarika, M., & Puranik, V. (2017). Sensory evaluation of probiotic whey beverages formulated from orange powder and flavor using fuzzy logic. International Food Research Journal, 24(2), 703.

    CAS  Google Scholar 

  • Fatma, S., Sharma, N., Singh, S. P., Jha, A., & Kumar, A. (2016). Fuzzy analysis of sensory data for ranking of beetroot candy. International Journal of Food Engineering, 2, 26–30.

    Google Scholar 

  • Fiszman, S. (2008). Quality of battered or breaded fried products. In S. Sahin & S. G. Sumnu (Eds.), Advances in deep-fat frying of foods (pp. 243–262). Boca Raton: CRC Press Taylor & Francis Group.

    Google Scholar 

  • Flores, M. (2008). Sensory descriptors in dry-cured meat products. In Handbook of processed meat and poultry analysis (pp. 423–444). Boca Raton: CRC Press Taylor & Francis Group.

    Google Scholar 

  • Ford RA (2017) Chapter 3 - Deciding which test to use in discrimination testing. In: Rogers L (ed) Discrimination testing in sensory science. p^pp 67-83. Woodhead Publishing.

  • Ghosh, P., & Bhattacharjee, P. (2015). Quality assessment of fried potato wedges by fuzzy logic and texture analyses. Acta Alimentaria, 44(2), 178–184.

    Google Scholar 

  • Guillaume, S., & Charnomordic, B. (2001). Knowledge discovery for control purposes in food industry databases. Fuzzy Sets and Systems, 122(3), 487–497.

    Google Scholar 

  • Guillaume, S., & Charnomordic, B. (2004). Fuzzy inference systems to model sensory evaluation. In Intelligent sensory evaluation (pp. 197-216): Springer.

  • Hmar, B. Z., Mishra, S., & Pradhan, R. C. (2017). Physico-chemical and sensory analysis of Kendu (Diospyros melaxoxylon Roxb.) jam using fuzzy logic. Journal of Food Measurement and Characterization, 11(4), 1928–1935.

    Google Scholar 

  • Hong, J. H., Choi, J. H., & Lee, S. J. (2017). Investigation of sensory attributes contributing to beer preference among Koreans by using fuzzy reasoning. Journal of the Institute of Brewing, 123(1), 49–57.

    CAS  Google Scholar 

  • Hough, G., Bratchell, N., & Macdougall, D. B. (1992). Sensory profiling of dulce de leche, a dairy based confectionary product. Journal of Sensory Studies, 7(3), 157–178.

    Google Scholar 

  • Hunter, E. A., & Muir, D. D. (1993). Sensory properties of fermented milks: objective reduction of an extensive sensory vocabulary. Journal of Sensory Studies, 8(3), 213–227.

    Google Scholar 

  • Ioannou, I., Mauris, G., Trystram, G., & Perrot, N. (2006). Back-propagation of imprecision in a cheese ripening fuzzy model based on human sensory evaluations. Fuzzy Sets and Systems, 157(9), 1179–1187.

    Google Scholar 

  • Ioannou, I., Perrot, N., Curt, C., Allais, I., Agioux, L., Mauris, G., & Trystram, G. (2004a). The fuzzy symbolic approach for the control of sensory properties in food processes. In: Intelligent sensory evaluation, pp. 175-195. Springer.

  • Ioannou, I., Perrot, N., Curt, C., Mauris, G., & Trystram, G. (2004b). Development of a control system using the fuzzy set theory applied to a browning process––a fuzzy symbolic approach for the measurement of product browning: development of a diagnosis model––part I. Journal of Food Engineering, 64(4), 497–506.

    Google Scholar 

  • Jaenke, R., Barzi, F., McMahon, E., Webster, J., & Brimblecombe, J. (2017). Consumer acceptance of reformulated food products: a systematic review and meta-analysis of salt-reduced foods. Critical Reviews in Food Science and Nutrition, 57(16), 3357–3372.

    CAS  PubMed  Google Scholar 

  • Jaya, S., & Das, H. (2003). Sensory evaluation of mango drinks using fuzzy logic. Journal of Sensory Studies, 18(2), 163–176.

    Google Scholar 

  • Jeong, Y.-N., Kang, B.-A., Jeong, M.-J., Song, M.-J., Hautus, M. J., & Lee, H.-S. (2016). Sensory discrimination by consumers of multiple stimuli from a reference: stimulus configuration in A-Not AR and constant-ref. duo-trio superior to triangle and unspecified tetrad? Food Quality and Preference, 47, 10–22.

    Google Scholar 

  • Jeong, Y.-N., van Hout, D., Groeneschild, C., & Lee, H.-S. (2017). Comparative categorization method: using 2-AFC strategy in constant-reference duo-trio for discrimination of multiple stimuli from a reference. Food Quality and Preference, 62, 284–295.

    Google Scholar 

  • Jha, P., Das, A. J., Dash, K. K., & Deka, S. C. (2015). Sensory evaluation of black pigmented rice (Oryza sativa cv. Poireton) wine fortified with probiotic Lactobacillus acidophilus ATCC 4356 and Lactobacillus sakei ATCC 15521 using fuzzy logic. Journal of the Institute of Brewing, 121(4), 566–573.

    Google Scholar 

  • Kaushik, N., Gondi, A. R., Rana, R., & Rao, P. S. (2015). Application of fuzzy logic technique for sensory evaluation of high pressure processed mango pulp and litchi juice and its comparison to thermal treatment. Innovative Food Science & Emerging Technologies, 32, 70–78.

    Google Scholar 

  • Kim, M.-A., Sim, H.-M., & Lee, H.-S. (2015). Affective discrimination methodology: determination and use of a consumer-relevant sensory difference for food quality maintenance. Food Research International, 70, 47–54.

    Google Scholar 

  • Kumar, V., Sharma, H., Singh, K., & Singh, R. (2015). Optimization of process parameters for the production of taro chips using RSM with fuzzy modeling. Journal of Food Measurement and Characterization, 9(3), 400–413.

    Google Scholar 

  • Kumar, Y., & Badgujar, P. C. (2018). Sensory evaluation of seaweed-coffee infusions using fuzzy logic. The Pharma Innovation Journal, 7(11), 567–572.

    Google Scholar 

  • Kupongsak, S., Tan, J., Hatem, I., Lu, W., Guthrie, B., & Tanoff, M. (2004). Set point determination from sensory evaluations for food process control. Journal of Food Process Engineering, 27(2), 87–102.

    Google Scholar 

  • Lasunon, P., & Sengkhamparn, N. (2016). Fuzzy analytical modeling for sensory evaluation of water meal (Wolffia arrhiza (L.) Wimm.)-rice cracker. Engineering and Applied Science Research, 43, 291–293.

    Google Scholar 

  • Lau, T., Hui, P. C., Ng, F. S., & Chan, K. C. (2006). A new fuzzy approach to improve fashion product development. Computers in Industry, 57(1), 82–92.

    Google Scholar 

  • Lawless, H. T., & Heymann, H. (2013). Sensory evaluation of food: principles and practices, Springer Science & Business Media.

  • Lazim, M., & Suriani, M. (2009). Sensory evaluation of the selected coffee products using fuzzy approach. World Academy of Science, Engineering and TechnologyTechnol, 50, 717–720.

    Google Scholar 

  • Lee, S. J., & Kwon, Y. A. (2007). Study on fuzzy reasoning application for sensory evaluation of sausages. Food Control, 18, 811–816.

    Google Scholar 

  • Livio, J. A., & Hodhod, R. (2018). AI cupper: a fuzzy expert system for sensorial evaluation of coffee bean attributes to derive quality scoring. IEEE Transactions on Fuzzy Systems, 26(6), 3418–3427.

    Google Scholar 

  • Lu, Q., Liu, H., Wang, Q., & Liu, J. (2017). Sensory and physical quality characteristics of bread fortified with apple pomace using fuzzy mathematical model. International Journal of Food Science & Technology, 52(5), 1092–1100.

    CAS  Google Scholar 

  • Mamdani, E. H., & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7(1), 1–13.

    Google Scholar 

  • Mangaraj, S., & Tripathi, M. K. (2013). Sensory quality evaluation of MA packaged fruits applying Fuzzy logic. TrendsBiosci, 6(2), 195–199.

    Google Scholar 

  • Martınez, L. (2007). Sensory evaluation based on linguistic decision analysis. International Journal of Approximate Reasoning, 44(2), 148–164.

    Google Scholar 

  • Meena, G. S., Gupta, V. K., Khetra, Y., Raghu, H., & Parmar, P. (2015). Fuzzy logic (similarity analysis) modelling for sensory evaluation of the market samples of Kheer Mohan. Indian Journal of Dairy Science, 68.

  • Meena, G. S., Kumar, N., Parmar, P. T., Banerjee, R., Majumdar, G. C., & Khetra, Y. (2016). Sensory preference modeling of probiotic shrikhand employing soft computing. Agricultural research, 5(4), 362–372.

    Google Scholar 

  • Meena, G. S., Dewan, A., Upadhyay, N., Barapatre, R., Kumar, N., Singh, A. K., & Rana, J. S. (2019). Fuzzy analysis of sensory attributes of gluten free pasta prepared from brown rice, amaranth, flaxseed flours and whey protein concentrates. Journal of Food Science and Nutrition Research, 2(1), 022–037.

    Google Scholar 

  • Mehraban Sangatash, M., Mohebbi, M., Shahidi, F., Vahidian Kamyad, A., & Qhods Rohani, M. (2012). Application of fuzzy logic to classify raw milk based on qualitative properties. International journal of AgriScience, 2, 1168–1178.

    Google Scholar 

  • Meilgaard, M. C., Carr, B. T., & Civille, G. V. (1999). Sensory evaluation techniques. CRC press.

  • Meiselman, H. L. (1993). Critical evaluation of sensory techniques. Food Quality and Preference, 4(1-2), 33–40.

    Google Scholar 

  • Mohammadi, M. T., Salehi, F., & Razavi, S. M. (2011). Sensory acceptability modeling of pistachio green hull’s marmalade using fuzzy approach. International Journal of Nuts and Related Sciences, 2(2), 01–08.

    Google Scholar 

  • Moussaoui, K. A., & Varela, P. (2010). Exploring consumer product profiling techniques and their linkage to a quantitative descriptive analysis. Food Quality and Preference, 21(8), 1088–1099.

    Google Scholar 

  • Mukhopadhyay, S., Majumdar, G. C., Goswami, T. K., & Mishra, H. N. (2013). Fuzzy logic (similarity analysis) approach for sensory evaluation of chhana podo. LWT - Food Science and Technology, 53(1), 204–210.

    CAS  Google Scholar 

  • Murray, J., Delahunty, C., & Baxter, I. (2001). Descriptive sensory analysis: past, present and future. Food Research International, 34(6), 461–471.

    Google Scholar 

  • Rao, P. K., & Das, H. (2003). Fuzzy logic based optimization of ingredients for production of mango bar and its properties. Journal of Food Science and Technology, 40, 576–581.

    Google Scholar 

  • Perrin, L., Symoneaux, R., Maître, I., Asselin, C., Jourjon, F., & Pagès, J. (2008). Comparison of three sensory methods for use with the Napping® procedure: case of ten wines from Loire valley. Food Quality and Preference, 19(1), 1–11.

    Google Scholar 

  • Perrot, N., Agioux, L., Ioannou, I., Mauris, G., Corrieu, G., & Trystram, G. (2004). Decision support system design using the operator skill to control cheese ripening––application of the fuzzy symbolic approach. Journal of Food Engineering, 64(3), 321–333.

    Google Scholar 

  • Perrot, N., Ioannou, I., Allais, I., Curt, C., Hossenlopp, J., & Trystram, G. (2006). Fuzzy concepts applied to food product quality control: a review. Fuzzy Sets and Systems, 157(9), 1145–1154.

    Google Scholar 

  • Petropoulos, S., Karavas, C. S., Balafoutis, A. T., Paraskevopoulos, I., Kallithraka, S., & Kotseridis, Y. (2017). Fuzzy logic tool for wine quality classification. Computers and Electronics in Agriculture, 142, 552–562.

    Google Scholar 

  • Piclin, N., Pintore, M., Lanza, C. M., Scacco, A., Guccione, S., Giurato, L., & Chretien, J. R. (2008). Sensory analysis of red wines: discrimination by adaptive fuzzy partition. Journal of Sensory Studies, 23(4), 558–569.

    Google Scholar 

  • Piggott, J., & Mowat, R. (1991). Sensory aspects of maturation of Cheddar cheese by descriptive analysis. Journal of Sensory Studies, 6(1), 49–62.

    Google Scholar 

  • Qasem, A. A. A., Alamri, M., Mohamed, A., Hussain, S., Mahmood, K., & Ibraheem, M. (2017). Soluble fiber-fortified sponge cakes: formulation, quality and sensory evaluation. Journal of Food Measurement and Characterization, 11(3), 1516–1522.

    Google Scholar 

  • Rathore, H., Sehwag, S., Prasad, S., & Sharma, S. (2019). Technological, nutritional, functional and sensorial attributes of the cookies fortified with Calocybe indica mushroom. Journal of Food Measurement and Characterization, 13(2), 1–12.

    Google Scholar 

  • Rocha, I. F., & Bolini, H. M. A. (2015). Passion fruit juice with different sweeteners: sensory profile by descriptive analysis and acceptance. Food Science & Nutrition, 3(2), 129–139.

    CAS  Google Scholar 

  • Routray, W., & Mishra, H. (2012). Sensory evaluation of different drinks formulated from dahi (Indian yogurt) powder using fuzzy logic. Journal of Food Processing and Preservation, 36(1), 1–10.

    Google Scholar 

  • Ruan, D. (1997). Intelligent hybrid systems: fuzzy logic, neural networks, and genetic algorithms. Springer.

  • Ruan, D., & Zeng, X. (2013). Intelligent sensory evaluation: methodologies and applications. Springer Science & Business Media.

  • Sahu, C. K., & Kadeppagari, R.-K. (2017). Sensory evaluation of kokum drinks by fuzzy logic and a simple method. International Journal of Food Properties, 20(11), 2608–2615.

    CAS  Google Scholar 

  • Shinde, K., & Pardeshi, I. (2014). Fuzzy logic model for sensory evaluation of commercially available jam samples. Journal of Ready to Eat Food, 1, 78–84.

    Google Scholar 

  • Shinde, S., Halder, K., Kumar, N., Meena, G., & Pathera, A. (2017). Physico-chemical characterization and fuzzy logic modeling of sensory evaluation for market Ghewar. International Journal of Chemical Studies, 5(6), 1809–1816.

    CAS  Google Scholar 

  • Shrivastava, C., & Chakraborty, S. (2018). Bread from wheat flour partially replaced by fermented chickpea flour: optimizing the formulation and fuzzy analysis of sensory data. LWT- Food Science and Technology, 90, 215–223.

    CAS  Google Scholar 

  • Singh, K. P., Mishra, A., & Mishra, H. N. (2012). Fuzzy analysis of sensory attributes of bread prepared from millet-based composite flours. LWT - Food Science and Technology, 48(2), 276–282.

    CAS  Google Scholar 

  • Singh, V., Kumar, S., & Rai, A. (2018a). Sensory analysis of bar samples prepared from mahua (Madhuca longifolia) flower syrup using fuzzy logic. Nutrafoods, 17, 137–144.

    Google Scholar 

  • Singh, V., Kumar, S., Singh, J., & Rai, A. (2018b). Fuzzy logic sensory evaluation of cupcakes developed from the mahua flower (Madhuca longifolia). Journal of Emerging Technologies and Innovative Research, 5(1), 411–421.

    Google Scholar 

  • Sinija, V., & Mishra, H. (2011). Fuzzy analysis of sensory data for quality evaluation and ranking of instant green tea powder and granules. Food and Bioprocess Technology, 4(3), 408–416.

    Google Scholar 

  • Stampanoni, C. R. (1994). The use of standardized flavor languages and quantitative flavor profiling technique for flavored dairy products. Journal of Sensory Studies, 9(4), 383–400.

    Google Scholar 

  • Stone, H. (2012). Sensory evaluation practices. Academic press.

  • Sundaram, J., Naidu, B. K., & Das, H. (2004). Fuzzy logic a multi attribute decision making approach in product development and sensory evaluation. In: 2004 ASAE Annual Meeting, p. 1.

  • Tahir, H. E., Xiaobo, Z., Xiaowei, H., Jiyong, S., & Mariod, A. A. (2016). Discrimination of honeys using colorimetric sensor arrays, sensory analysis and gas chromatography techniques. Food Chemistry, 206, 37–43.

    CAS  PubMed  Google Scholar 

  • Tahsiri, Z., Niakousari, M., Khoshnoudi-Nia, S., & Hosseini, S. M. H. (2017). Sensory evaluation of selected formulated milk barberry drinks using the fuzzy approach. Food Science & Nutrition, 5(3), 739–749.

    CAS  Google Scholar 

  • Tan, J., Gao, X., & Gerrard, D. (1999). Application of fuzzy sets and neural networks in sensory analysis. Journal of Sensory Studies, 14(2), 119–138.

    Google Scholar 

  • Torrico, D. D., Hutchings, S. C., Ha, M., Bittner, E. P., Fuentes, S., Warner, R. D., & Dunshea, F. R. (2018). Novel techniques to understand consumer responses towards food products: a review with a focus on meat. Meat Science, 144, 30–42.

    PubMed  Google Scholar 

  • Turksen, I. B., & Wilson, I. (1993). Consumer preference models: fuzzy theory approach. In: Applications of fuzzy logic technology, pp. 203-212.

  • Tzia, C., & Liadakis, G. (2003). Extraction optimization in food engineering. CRC Press.

  • Vaclavik, V. A., & Christian, E. W. (2014). Evaluation of food quality. In Essentials of food science (pp. 3–15). New York: Springer.

    Google Scholar 

  • Viejo, C. G., Fuentes, S., Howell, K., Torrico, D. D., & Dunshea, F. R. (2019). Integration of non-invasive biometrics with sensory analysis techniques to assess acceptability of beer by consumers. Physiology & Behavior, 200, 139–147.

    Google Scholar 

  • Voos, H., Litz, L., & König, H. (1998). Fuzzy control of a drying process in sugar industry. The European Congress on Intelligent Techniques and Soft Computing EUFIT, 1998, 1015–1020.

    Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.

    Google Scholar 

  • Zeng, X., Ruan, D., & Koehl, L. (2008). Intelligent sensory evaluation: concepts, implementations, and applications. Mathematics and Computers in Simulation, 77(5-6), 443–452.

    Google Scholar 

  • Zimmermann, H.-J., & Zysno, P. (1980). Latent connectives in human decision making. Fuzzy Sets and Systems, 4(1), 37–51.

    Google Scholar 

  • Zolfaghari, Z. S., Mohebbi, M., & Najariyan, M. (2014). Application of fuzzy linear regression method for sensory evaluation of fried donut. Applied Soft Computing, 22, 417–423.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kshirod K. Dash.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vivek, K., Subbarao, K., Routray, W. et al. Application of Fuzzy Logic in Sensory Evaluation of Food Products: a Comprehensive Study. Food Bioprocess Technol 13, 1–29 (2020). https://doi.org/10.1007/s11947-019-02337-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-02337-4

Keywords

Navigation