Skip to main content
Log in

Ultrasound Processing Alone or in Combination with Other Chemical or Physical Treatments as a Safety and Quality Preservation Strategy of Fresh and Processed Fruits and Vegetables: A Review

  • Review
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Ultrasound (US) processing has emerged as a novel food preservation technology. This strategy has proved antimicrobial effects due to cavitation, which is the formation, growth, and collapse of bubbles that generate a localized mechanical and chemical energy. This technology can be applied by water so introducing it in the washing step to obtain safe fresh or fresh-cut products could be promising. The current review provides an overview of the current knowledge and recent findings on the use of US, alone or in combination with other mild physical technologies or chemical agents, to reduce microbial loads, and to better retain their quality attributes including color and texture, as well as the content of bioactive compounds such as antioxidant, phenolic compounds, or vitamins of minimally processed fruits and vegetables. As the effects of US depends on several factors related with treatment parameters, target microorganism, and matrix characteristics, further research efforts should be directed on optimizing US processes in accordance with their further application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

Ascorbic acid

CFU:

Colony forming units

EO:

Essential oil

FV:

Fruits and vegetables

GRAS:

Generally recognized as safe

POD:

Phenol peroxidase

PPO:

Polyphenol oxidase

SAEW:

Slightly acidic electrolyzed water

TPC:

Total phenolic content

US:

Ultrasound

References

  • Abadias, M., Alegre, I., Usall, J., Torres, R., & Viñas, I. (2011). Evaluation of alternative sanitizers to chlorine disinfection for reducing foodborne pathogens in fresh-cut apple. Postharvest Biology and Technology, 59(3), 289–297. https://doi.org/10.1016/j.postharvbio.2010.09.014.

    Article  CAS  Google Scholar 

  • Aday, M. S., & Caner, C. (2014). Individual and combined effects of ultrasound, ozone and chlorine dioxide on strawberry storage life. LWT - Food Science and Technology, 57(1), 344–351. https://doi.org/10.1016/j.lwt.2014.01.006.

    Article  CAS  Google Scholar 

  • Adekunte, A. O., Tiwari, B. K., Cullen, P. J., Scannell, A. G. M., & O’Donnell, C. P. (2010). Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chemistry, 122(3), 500–507. https://doi.org/10.1016/j.foodchem.2010.01.026.

    Article  CAS  Google Scholar 

  • Afari, G. K., Hung, Y. C., King, C. H., & Hu, A. (2016). Reduction of Escherichia coli O157: H7 and Salmonella Typhimurium DT 104 on fresh produce using an automated washer with near neutral electrolyzed (NEO) water and ultrasound. Food Control, 63, 246–254. https://doi.org/10.1016/j.foodcont.2015.11.038.

    Article  CAS  Google Scholar 

  • Aguayo, E., Escalona, V., Silveira, A. C., & Artés, F. (2014). Quality of tomato slices disinfected with ozonated water. Food Science and Technology International, 20(3), 227–235. https://doi.org/10.1177/1082013213482846.

    Article  CAS  PubMed  Google Scholar 

  • Alexandre, E. M. C., Brandão, T. R. S., & Silva, C. L. M. (2013). Impact of non-thermal technologies and sanitizer solutions on microbial load reduction and quality factor retention of frozen red bell peppers. Innovative Food Science and Emerging Technologies, 17(im), 99–105. https://doi.org/10.1016/j.ifset.2012.11.009.

    Article  CAS  Google Scholar 

  • Amaral, R. D. A., Benedetti, B. C., Pujola, M., Achaerandio, I., & Bachelli, M. L. B. (2015). Effect of ultrasound on quality of fresh-cut potatoes during refrigerated storage. Food Engineering Reviews, 7(2), 176–184. https://doi.org/10.1007/s12393-014-9091-x.

    Article  Google Scholar 

  • Anaya-Esparza, L. M., Velázquez-Estrada, R. M., Roig, A. X., García-Galindo, H. S., Sayago-Ayerdi, S. G., & Montalvo-González, E. (2017). Thermosonication: An alternative processing for fruit and vegetable juices. Trends in Food Science and Technology, 61, 26–37. https://doi.org/10.1016/j.tifs.2016.11.020.

    Article  CAS  Google Scholar 

  • Andreoletti, O., Baggesen, D. L., Bolton, D., Butaye, P., Cook, P., Davies, R., & Threlfall, J. (2013). Scientific opinion on the risk posed by pathogens in food of non-animal origin. Part 1 (outbreak data analysis and risk ranking of food/pathogen combinations). EFSA Journal, 11(1), 3025. https://doi.org/10.2903/j.efsa.2013.3025.

    Article  Google Scholar 

  • Annegowda, H. V., Bhat, R., Min-Tze, L., Karim, A. A., & Mansor, S. M. (2012). Influence of sonication treatments and extraction solvents on the phenolics and antioxidants in star fruits. Journal of Food Science and Technology, 49(4), 510–514. https://doi.org/10.1007/s13197-011-0435-8.

    Article  CAS  PubMed  Google Scholar 

  • Ashokkumar, M., Sunartio, D., Kentish, S., Mawson, R., Simons, L., Vilkhu, K., & Versteeg, C. (2008). Modification of food ingredients by ultrasound to improve functionality: a preliminary study on a model system. Innovative Food Science and Emerging Technologies, 9(2), 155–160. https://doi.org/10.1016/j.ifset.2007.05.005.

    Article  CAS  Google Scholar 

  • Bal, E., Kok, D., & Torcuk, A. I. (2017). Postharvest putrescine and ultrasound treatments to improve quality and postharvest life of table grapes (Vitis vinifera L.) cv. Michele Palieri. Journal of Central European Agriculture, 18(3), 598–615. https://doi.org/10.5513/JCEA01/18.3.1934.

    Article  Google Scholar 

  • Barba, F. J., Koubaa, M., do Prado-Silva, L., Orlien, V., & de S Sant’Ana, A. (2017). Mild processing applied to the inactivation of the main foodborne bacterial pathogens: A review. Trends in Food Science and Technology, 66, 20–35. https://doi.org/10.1016/j.tifs.2017.05.011.

    Article  CAS  Google Scholar 

  • Barrett, D. M., Beaulieu, J. C., & Shewfelt, R. (2010). Color, flavor, texture, and nutritional quality of fresh-cut fruits and vegetables: desirable levels, instrumental and sensory measurement, and the effects of processing. Critical Reviews in Food Science and Nutrition, 50(5), 369–389. https://doi.org/10.1080/10408391003626322.

    Article  PubMed  Google Scholar 

  • Bermúdez-Aguirre, D., & Barbosa-Cánovas, G. V. (2013). Disinfection of selected vegetables under nonthermal treatments: chlorine, acid citric, ultraviolet light and ozone. Food Control, 29(1), 82–90. https://doi.org/10.1016/j.foodcont.2012.05.073.

    Article  CAS  Google Scholar 

  • Bevilacqua, A., Petruzzi, L., Perricone, M., Speranza, B., Campaniello, D., Sinigaglia, M., & Corbo, M. R. (2018). Nonthermal technologies for fruit and vegetable juices and beverages: overview and advances. Comprehensive Reviews in Food Science and Food Safety, 17(1), 2–62. https://doi.org/10.1111/1541-4337.12299.

    Article  Google Scholar 

  • Bhat, R., Kamaruddin, N. S. B. C., Min-Tze, L., & Karim, A. A. (2011). Sonication improves kasturi lime (Citrus microcarpa) juice quality. Ultrasonics Sonochemistry, 18(6), 1295–1300. https://doi.org/10.1016/j.ultsonch.2011.04.002.

    Article  CAS  PubMed  Google Scholar 

  • Bilek, S. E., & Turantaş, F. (2013). Decontamination efficiency of high power ultrasound in the fruit and vegetable industry, a review. International Journal of Food Microbiology, 166(1), 155–162. https://doi.org/10.1016/j.ijfoodmicro.2013.06.028.

    Article  PubMed  Google Scholar 

  • Birmpa, A., Sfika, V., & Vantarakis, A. (2013). Ultraviolet light and ultrasound as non-thermal treatments for the inactivation of microorganisms in fresh ready-to-eat foods. International Journal of Food Microbiology, 167(1), 96–102. https://doi.org/10.1016/j.ijfoodmicro.2013.06.005.

    Article  PubMed  Google Scholar 

  • Brilhante São José, J. F., & Dantas Vanetti, M. C. (2012). Effect of ultrasound and commercial sanitizers in removing natural contaminants and Salmonella enterica Typhimurium on cherry tomatoes. Food Control, 24(1–2), 95–99. https://doi.org/10.1016/j.foodcont.2011.09.008.

    Article  CAS  Google Scholar 

  • Brodowska, A. J., Nowak, A., & Śmigielski, K. (2017). Ozone in the food industry: principles of ozone treatment, mechanisms of action, and applications: an overview. Critical Reviews in Food Science and Nutrition, 8398(April), 1–26. https://doi.org/10.1080/10408398.2017.1308313.

    Article  CAS  Google Scholar 

  • Calmont, M., & Tan, J. Y. (2010). The way forward with organic acids. All About Feed, 1(6), 14-16

  • Cao, X., Cai, C., Wang, Y., & Zheng, X. (2018). The inactivation kinetics of polyphenol oxidase and peroxidase in bayberry juice during thermal and ultrasound treatments. Innovative Food Science and Emerging Technologies, 45, 169–178. https://doi.org/10.1016/j.ifset.2017.09.018.

    Article  CAS  Google Scholar 

  • Cebrián, G., Mañas, P., & Condón, S. (2016). Comparative resistance of bacterial foodborne pathogens to non-thermal technologies for food preservation. Frontiers in Microbiology, 7(MAY), 1–17. https://doi.org/10.3389/fmicb.2016.00734.

    Article  Google Scholar 

  • Chemat, F., Zill-E-Huma, & Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 813–835. https://doi.org/10.1016/j.ultsonch.2010.11.023.

    Article  CAS  PubMed  Google Scholar 

  • Chemat, F., Rombaut, N., Meullemiestre, A., Turk, M., Perino, S., Fabiano-Tixier, A. S., & Abert-Vian, M. (2017). Review of green food processing techniques. Preservation, transformation, and extraction. Innovative Food Science and Emerging Technologies, 41, 357–377. https://doi.org/10.1016/j.ifset.2017.04.016.

    Article  CAS  Google Scholar 

  • Cheng, L. H., Soh, C. Y., Liew, S. C., & Teh, F. F. (2007). Effects of sonication and carbonation on guava juice quality. Food Chemistry, 104(4), 1396–1401. https://doi.org/10.1016/j.foodchem.2007.02.001.

    Article  CAS  Google Scholar 

  • Chizoba Ekezie, F. G., Cheng, J. H., & Sun, D. W. (2018). Effects of nonthermal food processing technologies on food allergens: a review of recent research advances. Trends in Food Science and Technology, 74, 12–25. https://doi.org/10.1016/j.tifs.2018.01.007.

    Article  CAS  Google Scholar 

  • de São José, J. F. B., de Andrade, N. J., Ramos, A. M., Vanetti, M. C. D., Stringheta, P. C., & Chaves, J. B. P. (2014a). Decontamination by ultrasound application in fresh fruits and vegetables. Food Control, 45, 36–50. https://doi.org/10.1016/j.foodcont.2014.04.015.

    Article  Google Scholar 

  • de São José, J. F. B., de Medeiros, H. S., Bernardes, P. C., & de Andrade, N. J. (2014b). Removal of Salmonella enterica Enteritidis and Escherichia coli from green peppers and melons by ultrasound and organic acids. International Journal of Food Microbiology, 190, 9–13. https://doi.org/10.1016/j.ijfoodmicro.2014.08.015.

    Article  CAS  Google Scholar 

  • de São José, J. F. B., de Medeiros, H. S., de Andrade, N. J., & Bernardes, P. C. (2015). Ultrasound and organic acid against Salmonella enterica Enteritidis and Escherichia coli from pear surfaces. Boletim do Centro de Pesquisa de Processamento de Alimentos, 33(1).

  • de Souza, L. P., Faroni, L. R. D. A., Heleno, F. F., Cecon, P. R., Gonçalves, T. D. C., da Silva, G. J., & Prates, L. H. F. (2018). Effects of ozone treatment on postharvest carrot quality. LWT - Food Science and Technology, 90, 53–60. https://doi.org/10.1016/j.lwt.2017.11.057.

    Article  CAS  Google Scholar 

  • do Rosário, D. K. A., da Silva Mutz, Y., Peixoto, J. M. C., Oliveira, S. B. S., de Carvalho, R. V., Carneiro, J. C. S., Sao Jose, J. F. B., & Bernardes, P. C. (2017). Ultrasound improves chemical reduction of natural contaminant microbiota and Salmonella enterica subsp. enterica on strawberries. International Journal of Food Microbiology, 241, 23–29.

    Article  CAS  PubMed  Google Scholar 

  • Eh, A. L., & Teoh, S. (2012). Novel modified ultrasonication technique for the extraction of lycopene from tomatoes. Ultrasonics Sonochemistry, 19(1), 151–159.

    Article  CAS  PubMed  Google Scholar 

  • Feng, L., Zhang, M., Adhikari, B., & Guo, Z. (2018). Effect of ultrasound combined with controlled atmosphere on postharvest storage quality of cucumbers (Cucumis sativus L.). Food and Bioprocess Technology. https://doi.org/10.1007/s11947-018-2102-9.

  • Ferrentino, G., & Spilimbergo, S. (2015a). High pressure carbon dioxide combined with high power ultrasound pasteurization of fresh cut carrot. Journal of Supercritical Fluids, 105, 105–178. https://doi.org/10.1016/j.supflu.2014.12.014.

  • Ferrentino, G., Komes, D., & Spilimbergo, S. (2015b). High-power ultrasound assisted high-pressure carbon dioxide pasteurization of fresh-cut coconut: a microbial and physicochemical study. Food and Bioprocess Technology, 8(12), 2368–2382. https://doi.org/10.1007/s11947-015-1582-0.

  • Freitas Brilhante de Sâo José, J. F., Silva de Medeiros, H., Campos Bernardes, P., & José de Andrade, N. (2015). Ultrasound and organic acids in removal of Salmonella enterica subsp. Enteritidis and Escherichia coli from. Boletim Do Centro Do Pesquisa de Processamendo de Alimentos, 33(1), 118–128.

    Google Scholar 

  • Gani, A., Baba, W. N., Ahmad, M., Shah, U., Khan, A. A., & Wani, I. A. (2016). Effect of ultrasound treatment on physico-chemical, nutraceutical and microbial quality of strawberry. LWT - Food Science and Technology, 66, 496–502. https://doi.org/10.1016/j.lwt.2015.10.067.

    Article  CAS  Google Scholar 

  • García-Pérez, J. V., Cárcel, J. A., de la Fuente-Blanco, S., & Riera-Franco de Sarabia, E. (2006). Ultrasonic drying of foodstuff in a fluidized bed: Parametric study. Ultrasonics, 44(SUPPL), 539–543. https://doi.org/10.1016/j.ultras.2006.06.059.

    Article  Google Scholar 

  • Grau Rojas, A., Garner, E., & Martín Belloso, O. (2010). The fresh-cut fruit and vegetables industry, current situation and market trends. In O. M. Belloso & R. S. Fortunt (Eds.), Advances in fresh-cut fruits and vegetables processing (1st ed., pp. 1–12) Taylor and Francis Group.

    Google Scholar 

  • Hamman, D., Tonkiel, K. F., Matthiensen, A., Zeni, J., Valduga, E., Paroul, N., Steffens, C., Toniazzo, G., & Cansian, R. (2018). Ultrasound use for Listeria monocytogenes attached cells removal from industrial brine injection needles. Italian Journal of Food Science, 30(4), 662–672. https://doi.org/10.14674/IJFS-1162.

    Article  Google Scholar 

  • Hashemi, S. M. B. (2018a). Effect of pulsed ultrasound treatment compared to continuous mode on microbiological and quality of Mirabelle plum during postharvest storage. International Journal of Food Science and Technology, 53(3), 564–570. https://doi.org/10.1111/ijfs.13629.

  • Hashemi, S. M. B., Mousavi Khaneghah, A., Fidelis, M., & Granato, D. (2018b). Effects of pulsed thermosonication treatment on fungal growth and bioactive compounds of Berberis vulgaris juice. International Journal of Food Science and Technology, 53(7), 1589–1596. https://doi.org/10.1111/ijfs.13740.

  • Hidalgo, G.-I., & Almajano, M. (2017). Red fruits: extraction of antioxidants, phenolic content, and radical scavenging determination: a review. Antioxidants, 6(1), 7. https://doi.org/10.3390/antiox6010007.

    Article  CAS  PubMed Central  Google Scholar 

  • Horvitz, S., & Cantalejo, M. J. (2014). Application of ozone for the postharvest treatment of fruits and vegetables. Critical Reviews in Food Science and Nutrition, 54(3), 312–339. https://doi.org/10.1080/10408398.2011.584353.

    Article  CAS  PubMed  Google Scholar 

  • Hossain, M. S., Balakrishnan, V., Rahman, N. N. N. A., Rajion, Z. A., & Kadir, M. O. A. (2013). Modeling the inactivation of Staphylococcus aureus and Serratia marcescens in clinical solid waste using supercritical fluid carbon dioxide. Journal of Supercritical Fluids, 83, 47–56. https://doi.org/10.1016/j.supflu.2013.08.011.

    Article  CAS  Google Scholar 

  • Hossain, M. S., Nik Norulaini, N. A., Banana, A. A., Mohd Zulkhairi, A. R., Ahmad Naim, A. Y., & Mohd Omar, A. K. (2016). Modeling the supercritical carbon dioxide inactivation of Staphylococcus aureus, Escherichia coli and Bacillus subtilis in human body fluids clinical waste. Chemical Engineering Journal, 296, 173–181. https://doi.org/10.1016/j.cej.2016.03.120.

    Article  CAS  Google Scholar 

  • Illera, A. E., Sanz, M. T., Benito-Román, O., Varona, S., Beltrán, S., Melgosa, R., & Solaesa, A. G. (2018). Effect of thermosonication batch treatment on enzyme inactivation kinetics and other quality parameters of cloudy apple juice. Innovative Food Science and Emerging Technologies, 47(2017), 71–80. https://doi.org/10.1016/j.ifset.2018.02.001.

    Article  CAS  Google Scholar 

  • Jahouach-Rabai, W., Trabelsi, M., Van Hoed, V., Adams, A., Verhé, R., De Kimpe, N., & Frikha, M. H. (2008). Influence of bleaching by ultrasound on fatty acids and minor compounds of olive oil. Qualitative and quantitative analysis of volatile compounds (by SPME coupled to GC/MS). Ultrasonics Sonochemistry, 15(4), 590–597. https://doi.org/10.1016/j.ultsonch.2007.06.007.

    Article  CAS  PubMed  Google Scholar 

  • Nowacka, M., Wiktor, A., Śledź, M., Jurek, N., & Witrowa-Rajchert, D. (2012). Drying of ultrasound pretreated apple and its selected physical properties. Journal of Food Engineering, 113(3), 427–433.https://doi.org/10.1016/j.jfoodeng.2012.06.013.

  • Kentish, S., & Feng, H. (2014). Applications of power ultrasound in food processing. Annual Review of Food Science and Technology, 5(1), 263–284. https://doi.org/10.1146/annurev-food-030212-182537.

    Article  CAS  PubMed  Google Scholar 

  • Khan, M. K., Ahmad, K., Hassan, S., Imran, M., Ahmad, N., & Xu, C. (2018). Effect of novel technologies on polyphenols during food processing. Innovative Food Science and Emerging Technologies, 45, 361–381. https://doi.org/10.1016/j.ifset.2017.12.006.

    Article  CAS  Google Scholar 

  • Koide, S., Takeda, J. I., Shi, J., Shono, H., & Atungulu, G. G. (2009). Disinfection efficacy of slightly acidic electrolyzed water on fresh cut cabbage. Food Control, 20(3), 294–297. https://doi.org/10.1016/j.foodcont.2008.05.019.

    Article  CAS  Google Scholar 

  • Kumcuoglu, S., Yilmaz, T., & Tavman, S. (2014). Ultrasound assisted extraction of lycopene from tomato processing wastes. Journal of Food Science and Technology, 51(12), 4102–4107. https://doi.org/10.1007/s13197-013-0926-x.

    Article  CAS  PubMed  Google Scholar 

  • Lafarga, T., Álvarez, C., Bobo, G., & Aguiló-Aguayo, I. (2018). Characterization of functional properties of proteins from Ganxet beans (Phaseolus vulgaris L. var. Ganxet) isolated using an ultrasound-assisted methodology. LWT, 98, 106-112. https://doi.org/10.1016/j.lwt.2018.08.033

  • Lafarga, T., Rodríguez-Roque, M. J., Bobo, G., Villaró, S., & Aguiló-Aguayo, I. (2019). Effect of ultrasound processing on the bioaccessibility of phenolic compounds and antioxidant capacity of selected vegetables. Food Science and Biotechnology 1-9. https://doi.org/10.1007/s10068-019-00618-4.

  • Lagnika, C., Zhang, M., & Mothibe, K. J. (2013). Effects of ultrasound and high pressure argon on physico-chemical properties of white mushrooms (Agaricus bisporus) during postharvest storage. Postharvest Biology and Technology, 82, 87–94. https://doi.org/10.1016/j.postharvbio.2013.03.006.

    Article  CAS  Google Scholar 

  • Leong, T., Juliano, P., & Knoerzer, K. (2017). Advances in ultrasonic and megasonic processing of foods. Food Engineering Reviews, 9(3), 237–256. https://doi.org/10.1007/s12393-017-9167-5.

    Article  CAS  Google Scholar 

  • Li, N., Chen, F., Cui, F., Sun, W., Zhang, J., Qian, L., Yang, Y., Wu, D., Dong, T., Jiang, J., & Yang, H. (2017). Improved postharvest quality and respiratory activity of straw mushroom (Volvariella volvacea) with ultrasound treatment and controlled relative humidity. Scientia Horticulturae, 225(June), 56–64. https://doi.org/10.1016/j.scienta.2017.06.057.

    Article  Google Scholar 

  • Liu, S., Liu, Y., Huang, X., Yang, W., Hu, W., & Pan, S. (2017). Effect of ultrasonic processing on the changes in activity, aggregation and the secondary and tertiary structure of polyphenol oxidase in oriental sweet melon (Cucumis melo var. makuwa Makino). Journal of the Science of Food and Agriculture, 97(4), 1326–1334. https://doi.org/10.1002/jsfa.7869.

    Article  CAS  PubMed  Google Scholar 

  • Luksiene, Z., & Brovko, L. (2013). Antibacterial photosensitization-based treatment for food safety. Food Engineering Reviews, 5(4), 185–199. https://doi.org/10.1007/s12393-013-9070-7.

    Article  CAS  Google Scholar 

  • Luo, K., & Oh, D. K. (2015). Synergistic effect of slightly acidic electrolyzed water and ultrasound at mild heat temperature in microbial reduction and shelf-life extension of fresh-cut bell pepper. Journal of Microbiology and Biotechnology, 25(9), 1502–1509. https://doi.org/10.4014/jmb.1505.05021.

  • Luo, K., & Oh, D. H. (2016a). Inactivation kinetics of Listeria monocytogenes and Salmonella enterica serovar Typhimurium on fresh-cut bell pepper treated with slightly acidic electrolyzed water combined with ultrasound and mild heat. Food Microbiology, 53, 165–171. https://doi.org/10.1016/j.fm.2015.09.014.

  • Luo, K., Kim, S. Y., Wang, J., & Oh, D. H. (2016b). A combined hurdle approach of slightly acidic electrolyzed water simultaneous with ultrasound to inactivate Bacillus cereus on potato. LWT - Food Science and Technology, 73, 615–621. https://doi.org/10.1016/j.lwt.2016.04.016.

  • Luo, Y., Zhou, B., Van Haute, S., Nou, X., Zhang, B., Teng, Z., & Millner, P. D. (2018). Association between bacterial survival and free chlorine concentration during commercial fresh-cut produce wash operation. Food Microbiology, 70, 120–128. https://doi.org/10.1016/j.fm.2017.09.013.

    Article  CAS  PubMed  Google Scholar 

  • Mañas, P., & Pagán, R. (2005). Microbial inactivation by new technologies of food preservation - a review. Journal of Applied Microbiology, 98(6), 1387–1399.

    Article  PubMed  Google Scholar 

  • Mansur A. R., & Oh D. H. (2015). Combined effects of thermosonication and slightly acidic electrolyzed water on the microbial quality and shelf life extension of fresh‐cut kale during refrigeration storage. Food Microbiology, 51, 154–162. https://doi.org/10.1016/j.fm.2015.05.008.

  • Mansur, A. R., & Oh, D. H. (2016). Modeling the growth of epiphytic bacteria on kale treated by thermosonication combined with slightly acidic alectrolyzed aater and stored under dynamic temperature conditions. Journal of Food Science, 81(8), M2021–M2030. https://doi.org/10.1111/1750-3841.13388.

    Article  CAS  PubMed  Google Scholar 

  • Silva, F. V. M., & Sulaiman, A. (2017). Advances in Thermosonication for the Inactivation of Endogenous Enzymes in Foods. In Ultrasound: Advances for Food Processing and Preservation (pp. 101-130). Academic Press. https://doi.org/10.1016/B978-0-12-804581-7.00004-X.

  • Meireles, A., Giaouris, E., & Simões, M. (2016). Alternative disinfection methods to chlorine for use in the fresh-cut industry. Food Research International, 82, 71–85. https://doi.org/10.1016/j.foodres.2016.01.021.

    Article  CAS  Google Scholar 

  • Millan-Sango, D., McElhatton, A., & Valdramidis, V. P. (2015). Determination of the efficacy of ultrasound in combination with essential oil of oregano for the decontamination of Escherichia coli on inoculated lettuce leaves. Food Research International, 67, 145–154. https://doi.org/10.1016/j.foodres.2014.11.001.

    Article  CAS  Google Scholar 

  • Millan-Sango, D., Garroni, E., Farrugia, C., Van Impe, J. F. M., & Valdramidis, V. P. (2016). Determination of the efficacy of ultrasound combined with essential oils on the decontamination of Salmonella inoculated lettuce leaves. LWT - Food Science and Technology, 73, 80–87. https://doi.org/10.1016/j.lwt.2016.05.039.

  • Muzaffar, S., Ahmad, M., Wani, S. M., Gani, A., Baba, W. N., Shah, U., Khan, A. A., Masoodi, F. A., Gani, A., & Wani, T. A. (2016). Ultrasound treatment: effect on physicochemical, microbial and antioxidant properties of cherry (Prunus avium). Journal of Food Science and Technology, 53(6), 2752–2759. https://doi.org/10.1007/s13197-016-2247-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nayak, B., Li, Z., Ahmed, I., & Lin, H. (2017). Removal of allergens in some food products using ultrasound. In Ultrasound: Advances for food processing and preservation (pp. 267-292). Academic Press.

  • Ortega-Rivas, E., & Salmerón-Ochoa, I. (2014). Nonthermal food processing alternatives and their effects on taste and flavor compounds of beverages. Critical Reviews in Food Science and Nutrition, 54(2), 190–207. https://doi.org/10.1080/10408398.2011.579362.

    Article  CAS  PubMed  Google Scholar 

  • Özcan, G., & Demirel Zorba, N. N. (2016). Combined effect of ultrasound and essential oils to reduce Listeria monocytogenes on fresh produce. Food Science and Technology International, 22(4), 353–362.

  • Pan, Z., Qu, W., Ma, H., Atungulu, G. G., & McHugh, T. H. (2012). Continuous and pulsed ultrasound-assisted extractions of antioxidants from pomegranate peel. Ultrasonics Sonochemistry, 19(2), 365–372. https://doi.org/10.1016/j.ultsonch.2011.05.015.

    Article  CAS  PubMed  Google Scholar 

  • Park, S., Szonyi, B., Gautam, R., Nightingale, K., Anciso, J., & Ivanek, R. (2012). Risk factors for microbial contamination in fruits and vegetables at the preharvest level: a systematic review. Journal of Food Protection, 75(11), 2055–2081. https://doi.org/10.4315/0362-028X.JFP-12-160.

    Article  CAS  PubMed  Google Scholar 

  • Park, J. B., Kang, J. H., & Song, K. B. (2018). Improving the microbial safety of fresh-cut endive with a combined treatment of cinnamon leaf oil emulsion containing cationic surfactants and ultrasound. Journal of Microbiology and Biotechnology, 28(4), 503–509. https://doi.org/10.4014/jmb.1711.11018.

  • Pérez-Andrés, J. M., Charoux, C. M. G., Cullen, P. J., & Tiwari, B. K. (2018). Chemical modifications of lipids and proteins by nonthermal food processing technologies. Journal of Agricultural and Food Chemistry, 66(20), 5041–5054. https://doi.org/10.1021/acs.jafc.7b06055.

    Article  CAS  PubMed  Google Scholar 

  • Pinela, J., & Ferreira, I. C. F. (2015). Nonthermal physical technologies to decontaminate and extend the shelf-life of fruits and vegetables: trends aiming at quality and safety. Critical Rviews in Food Science and Nutrition, 57(10), 2095–2111.

    Article  CAS  Google Scholar 

  • Pingret, D., Fabiano-Tixier, A. S., & Chemat, F. (2013). Degradation during application of ultrasound in food processing: a review. Food Control, 31(2), 593–606. https://doi.org/10.1016/j.foodcont.2012.11.039.

    Article  Google Scholar 

  • Pisoschi, A. M., & Negulescu, G. P. (2012). Methods for total antioxidant activity determination: a review. Biochemistry & Analytical Biochemistry, 01(01), 1–10. https://doi.org/10.4172/2161-1009.1000106.

    Article  Google Scholar 

  • Pisoschi, A. M., Pop, A., Georgescu, C., Turcuş, V., Olah, N. K., & Mathe, E. (2018). An overview of natural antimicrobials role in food. European Journal of Medicinal Chemistry, 143, 922–935. https://doi.org/10.1016/j.ejmech.2017.11.095.

    Article  CAS  PubMed  Google Scholar 

  • Plaza, L., Martín, D., Aguiló-aguayo, I., Zudaire, L., Viñas, I., & Abadias, M. (2015). Impact of calcium and ultrasound postarhvest treatments on Conference pear quality. In Eurofoodchem XVII. Upcoming chalenges in food chain. Madrid, Spain.

  • Potoroko, I., Kalinina, I., Botvinnikova, V., Krasulya, O., Fatkullin, R., Bagale, U., & Sonawane, S. H. (2018). Ultrasound effects based on simulation of milk processing properties. Ultrasonics Sonochemistry, 48, 463–472. https://doi.org/10.1016/j.ultsonch.2018.06.019.

    Article  CAS  PubMed  Google Scholar 

  • Prakash, M. N., & Ramana, K. V. (2003). Ultrasound and its application in the food industry. Journal of Food Science and Technology, 40(6), 563–570.

    Google Scholar 

  • Putnik, P., Bursać Kovačević, D., Herceg, K., & Levaj, B. (2017). Influence of antibrowning solutions, air exposure, and ultrasound on color changes in fresh‐cut apples during storage. Journal of food processing and preservation, 41(6), e13288.

  • Qadri, O. S., Yousuf, B., & Srivastava, A. K. (2015). Fresh-cut fruits and vegetables: critical factors influencing microbiology and novel approaches to prevent microbial risks: a review. Cogent Food & Agriculture, 1(1), 1–11. https://doi.org/10.1080/23311932.2015.1121606.

    Article  Google Scholar 

  • Ramos, B., Miller, F. A., Brandão, T. R. S., Teixeira, P., & Silva, C. L. M. (2013). Fresh fruits and vegetables - an overview on applied methodologies to improve its quality and safety. Innovative Food Science and Emerging Technologies, 20, 1–15. https://doi.org/10.1016/j.ifset.2013.07.002.

    Article  CAS  Google Scholar 

  • Rawson, A., Tiwari, B. K., Patras, A., Brunton, N., Brennan, C., Cullen, P. J., & O’Donnell, C. (2011). Effect of thermosonication on bioactive compounds in watermelon juice. Food Research International, 44(5), 1168–1173. https://doi.org/10.1016/j.foodres.2010.07.005.

    Article  CAS  Google Scholar 

  • Ribeiro-Santos, R., Andrade, M., Sanches-Silva, A., & de Melo, N. R. (2018). Essential oils for food application: natural substances with established biological activities. Food and Bioprocess Technology, 11(1), 43–71. https://doi.org/10.1007/s11947-017-1948-6.

    Article  CAS  Google Scholar 

  • Rico, D., Martín-Diana, A. B., Barat, J. M., & Barry-Ryan, C. (2007). Extending and measuring the quality of fresh-cut fruit and vegetables: a review. Trends in Food Science and Technology, 18(7), 373–386. https://doi.org/10.1016/j.tifs.2007.03.011.

    Article  CAS  Google Scholar 

  • Sagong, H. G., Lee, S. Y., Chang, P. S., Heu, S., Ryu, S., Choi, Y. J., & Kang, D. H. (2011). Combined effect of ultrasound and organic acids to reduce Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on organic fresh lettuce. International Journal of Food Microbiology, 145(1), 287–292. https://doi.org/10.1016/j.ijfoodmicro.2011.01.010.

    Article  PubMed  Google Scholar 

  • Salgado, S. P., Pearlstein, A. J., Luo, Y., & Feng, H. (2014). Quality of Iceberg (Lactuca sativa L.) and Romaine (L. sativa L. var. longifolial) lettuce treated by combinations of sanitizer, surfactant, and ultrasound. LWT - Food Science and Technology, 56(2), 261–268. https://doi.org/10.1016/j.lwt.2013.11.038.

    Article  CAS  Google Scholar 

  • Salvia-Trujillo, L., Rojas-Graü, A., Soliva-Fortuny, R., & Martín-Belloso, O. (2015). Physicochemical characterization and antimicrobial activity of food-grade emulsions and nanoemulsions incorporating essential oils. Food Hydrocolloids, 43, 547–556. https://doi.org/10.1016/j.foodhyd.2014.07.012.

    Article  CAS  Google Scholar 

  • Sánchez Rubio, M., Alnakip, M. E., Abouelnaga, M., Taboada-Rodríguez, A., & Marin-Iniesta, F. (2018). Use of thermosonication for inactivation of E. coli O157:H7 in fruit juices or fruit juice/reconstituted skim milk beverages. Acta Horticulturae, 1194, 267–274.

    Article  Google Scholar 

  • Santos, J. G., Fernandes, F. A. N., de Siqueira Oliveira, L., & de Miranda, M. R. A. (2015). Influence of ultrasound on fresh-cut mango quality through evaluation of enzymatic and oxidative metabolism. Food and Bioprocess Technology, 8(7), 1532–1542. https://doi.org/10.1007/s11947-015-1518-8.

    Article  CAS  Google Scholar 

  • Schössler, K., Thomas, T., & Knorr, D. (2012). Modification of cell structure and mass transfer in potato tissue by contact ultrasound. FRIN, 49(1), 425–431. https://doi.org/10.1016/j.foodres.2012.07.027.

    Article  CAS  Google Scholar 

  • Shahidi, F., & Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects - a review. Journal of Functional Foods, 18, 820–897. https://doi.org/10.1016/j.jff.2015.06.018.

    Article  CAS  Google Scholar 

  • Terefe N.S., Buckow, R., & Versteeg, C. (2015). Quality-related enzymes in plant-based products: effects of novel food-processing technologies part 3: ultrasonic processing. Critical Reviews in Food Science and Nutrition, 55(2), 147–158. https://doi.org/10.1080/10408398.2011.586134.

  • Silva, B. N., Cadavez, V., Teixeira, J. A., & Gonzales-Barron, U. (2017). Meta-analysis of the incidence of foodborne pathogens in vegetables and fruits from retail establishments in Europe. Current Opinion in Food Science, 18, 21–28. https://doi.org/10.1016/j.cofs.2017.10.001.

    Article  Google Scholar 

  • Silveira, L. O., Do Rosário, D. K. A., Giori, A. C. G., Oliveira, S. B. S., da Silva Mutz, Y., Marques, C. S., Moreira Coelho, J., & Bernardes, P. C. (2018). Combination of peracetic acid and ultrasound reduces Salmonella Typhimurium on fresh lettuce (Lactuca sativa L. var. crispa). Journal of Food Science and Technology. https://doi.org/10.1007/s13197-018-3071-8.

  • Soquetta, M. B., de Terra, L. M., & Bastos, C. P. (2018). Green technologies for the extraction of bioactive compounds in fruits and vegetables. CyTA Journal of Food, 16(1), 400–412. https://doi.org/10.1080/19476337.2017.1411978.

    Article  CAS  Google Scholar 

  • Soria, A. C., & Villamiel, M. (2010). Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends in Food Science & Technology, 21(7), 323–331. https://doi.org/10.1016/j.tifs.2010.04.003.

    Article  CAS  Google Scholar 

  • Sun, Y., Ma, G., Ye, X., Kakuda, Y., & Meng, R. (2010). Stability of all-trans-[beta]-carotene under ultrasound treatment in a model system: effects of different factors, kinetics and newly formed compounds. Ultrasonics Sonochemistry, 17(4), 654–661.

    Article  CAS  PubMed  Google Scholar 

  • Tamburini, S., Anesi, A., Ferrentino, G., Spilimbergo, S., Guella, G., & Jousson, O. (2014). Supercritical CO2 induces marked changes in membrane phospholipids composition in Escherichia coli K12. Journal of Membrane Biology, 247(6), 469–477. https://doi.org/10.1007/s00232-014-9653-0.

    Article  CAS  PubMed  Google Scholar 

  • Tan, M. S. F., Rahman, S., & Dykes, G. A. (2017). Sonication reduces the attachment of Salmonella Tyhphimurium ATCC 14028 cells to bacterial cellulose-based plant cell wall models and cut plant material. Food Microbiology, 62, 62–67.

    Article  CAS  PubMed  Google Scholar 

  • Tango, C. N., Khan, I., Ngnitcho Kounkeu, P. F., Momna, R., Hussain, M. S., & Oh, D. H. (2017). Slightly acidic electrolyzed water combined with chemical and physical treatments to decontaminate bacteria on fresh fruits. Food Microbiology, 67, 97–105. https://doi.org/10.1016/j.fm.2017.06.007.

    Article  CAS  PubMed  Google Scholar 

  • Toivonen, P. M. A., & Brummell, D. A. (2008). Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biology and Technology, 48(1), 1–14. https://doi.org/10.1016/j.postharvbio.2007.09.004.

    Article  CAS  Google Scholar 

  • Torlak, E., & Sert, D. (2013). Combined effect of benzalkonium chloride and ultrasound against L isteria monocytogenes biofilm on plastic surface. Letters in applied microbiology, 57(3), 220-226. https://doi.org/10.1111/lam.12100, 57, 3, 220, 226.

  • Van Impe, J., Smet, C., Tiwari, B., Greiner, R., Ojha, S., Stulić, V., … Režek Jambrak, A. (2018). State of the art of nonthermal and thermal processing for inactivation of micro-organisms. Journal of Applied Microbiology, 125(1), 16–35. https://doi.org/10.1111/jam.13751.

  • Vilkhu, K., Mawson, R., Simons, L., & Bates, D. (2008). Applications and opportunities for ultrasound assisted extraction in the food industry - a review. Innovative Food Science and Emerging Technologies, 9(2), 161–169. https://doi.org/10.1016/j.ifset.2007.04.014.

    Article  CAS  Google Scholar 

  • Vivek, K., Subbarao, K. V., & Srivastava, B. (2016). Optimization of postharvest ultrasonic treatment of kiwifruit using RSM. Ultrasonics Sonochemistry, 32, 328–335. https://doi.org/10.1016/j.ultsonch.2016.03.029.

    Article  CAS  PubMed  Google Scholar 

  • Wang, W., Ma, X., Zou, M., Jiang, P., Hu, W., Li, J., Zhi, Z., Chen, J., Li, S., Ding, T., Ye, X., & Liu, D. (2015). Effects of eltrasound on spoilage microorganisms, quality, and antioxidant capacity of postharvest cherry tomatoes. Journal of Food Science, 80(10), C2117–C2126. https://doi.org/10.1111/1750-3841.12955.

    Article  CAS  PubMed  Google Scholar 

  • Wang, D., Yeats, T. H., Uluisik, S., Rose, J. K. C., & Seymour, G. B. (2018). Fruit softening: revisiting the role of pectin. Trends in Plant Science, 23(4), 302–310. https://doi.org/10.1016/j.tplants.2018.01.006.

    Article  CAS  PubMed  Google Scholar 

  • Wu, S., Nie, Y., Zhao, J., Fan, B., Huang, X., Li, X., Sheng, J., Meng, D., Ding, Y., & Tang, X. (2018). The synergistic effects of low-concentration acidic electrolyzed water and ultrasound on the storage quality of fresh-sliced button mushrooms. Food and Bioprocess Technology, 11(2), 314–323. https://doi.org/10.1007/s11947-017-2012-2.

    Article  CAS  Google Scholar 

  • Ye, Z., Wang, S., Chen, T., Gao, W., Zhu, S., He, J., & Han, Z. (2017). Inactivation mechanism of Escherichia coli induced by slightly acidic electrolyzed water. Scientific Reports, 7(1), 1–10. https://doi.org/10.1038/s41598-017-06716-9.

    Article  CAS  Google Scholar 

  • Yeoh, W. K., & Ali, A. (2017). Ultrasound treatment on phenolic metabolism and antioxidant capacity of fresh-cut pineapple during cold storage. Food Chemistry, 216, 247–253. https://doi.org/10.1016/j.foodchem.2016.07.074.

    Article  CAS  PubMed  Google Scholar 

  • Yu, J., Engeseth, N. J., & Feng, H. (2016). High intensity ultrasound as an abiotic elicitor—effects on antioxidant capacity and overall quality of romaine lettuce. Food and Bioprocess Technology, 9(2), 262–273. https://doi.org/10.1007/s11947-015-1616-7.

    Article  CAS  Google Scholar 

  • Zhao, X., Zhao, F., Wang, J., & Zhong, N. (2017). Biofilm formation and control strategies of foodborne pathogens: food safety perspectives. RSC Advances, 7(58), 36670–36683. https://doi.org/10.1039/c7ra02497e.

    Article  CAS  Google Scholar 

  • Zhu, J., Wang, Y., Li, X., Li, B., Liu, S., Chang, N., Jie, D., Ning, C., Gao, H., & Meng, X. (2017). Combined effect of ultrasound, heat, and pressure on Escherichia coli O157:H7, polyphenol oxidase activity, and anthocyanins in blueberry (Vaccinium corymbosum) juice. Ultrasonics Sonochemistry, 37, 251–259. https://doi.org/10.1016/j.ultsonch.2017.01.017.

    Article  CAS  PubMed  Google Scholar 

  • Zudaire, L., Lafarga, T., Viñas, I., Abadias, M., Brunton, N., & Aguiló-Aguayo, I. (2019). Effect of Ultrasound Pre-Treatment on the Physical, Microbiological, and Antioxidant Properties of Calçots. Food and Bioprocess Technology, 12(3), 387–394.

Download references

Acknowledgements

I. Nicolau-Lapeña is in receipt of a predoctoral grant (BES 2017 079779) and T. Lafarga is in receipt of a “Juan de la Cierva” Grant (FJCI-2016–29541), both awarded by the Spanish Ministry of Economy, Industry and Competitiveness (MINECO). I. Aguiló-Aguayo thanks the National Programme for the Promotion of Talent and Its Employability of the MINECO and the European Social Fund for her Postdoctoral Senior Grant “Ramon y Cajal” (RYC-2016-2019 949). This study was supported by the MINECO project FRESAFE (AGL2016-78086-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Aguiló-Aguayo.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicolau-Lapeña, I., Lafarga, T., Viñas, I. et al. Ultrasound Processing Alone or in Combination with Other Chemical or Physical Treatments as a Safety and Quality Preservation Strategy of Fresh and Processed Fruits and Vegetables: A Review. Food Bioprocess Technol 12, 1452–1471 (2019). https://doi.org/10.1007/s11947-019-02313-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-02313-y

Keywords

Navigation