Skip to main content

Advertisement

Log in

Effects of Processing on Quality Attributes of Osmo-Dried Broccoli Stalk Slices

  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

In this study, the broccoli stalk was converted into dried product by using the osmotic dehydration as pre-treatment followed by microwave-assisted hot air drying as finish drying. The influences of these processing steps on the product quality such as vitamin C, total chlorophyll, total phenolic content, color, and texture of broccoli stalk slices were investigated. It has been demonstrated that when compared to fresh sample, osmotic dehydration pre-treatment resulted in a significant decrease (p < 0.05) in vitamin C content, chlorophyll content, and total phenolic content. In addition, the osmotically dehydrated product has minimal color changes and softer texture. While considering drying temperature as a factor, better quality retention was observed when osmotically dehydrated broccoli stalk slices were dried at a drying temperature of 40 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed, J. (2011). Drying of vegetables: principles and dryer design. In N. K. Sinha (Ed.), Handbook of vegetables and vegetable processing (pp. 279–298). Iowa, USA: Blackwell Publishing Ltd. 

  • Ahmed, J., Shivhare, U. S., & Singh, G. (2001). Drying characteristics and product quality of coriander leaves. Food and Bioproducts Processing, 79(2), 103–106. https://doi.org/10.1205/096030801750286258.

    Article  CAS  Google Scholar 

  • Alam, M. S., Amarjit, S., & Sawhney, B. K. (2010). Response surface optimization of osmotic dehydration process for aonla slices. Journal of Food Science and Technology, 47(1), 47–54. https://doi.org/10.1007/s13197-010-0014-4.

    Article  PubMed  PubMed Central  Google Scholar 

  • AOAC. (2000). Official methods of analysis (17th ed.). Gaithersburg, MD,USA: Association of Analytical Communities.

    Google Scholar 

  • Ares, A. M., Nozal, M. J., & Bernal, J. (2013). Extraction, chemical characterization and biological activity determination of broccoli health promoting compounds. Journal of Chromatography. A, 1313, 78–95.

    Article  CAS  Google Scholar 

  • Azoubel, P. M., Rocha Amorim, M., Oliveira, S. S. B., Maciel, M. I. S., & Rodrigues, J. D. (2015). Improvement of water transport and carotenoid retention during drying of papaya by applying ultrasonic osmotic pretreatment. Food Engineering Reviews, 7(2), 185–192. https://doi.org/10.1007/s12393-015-9120-4.

    Article  CAS  Google Scholar 

  • Bakar, M. F. A., Mohamed, M., Rahmat, A., & Fry, J. (2009). Phytochemicals and antioxidant activity of different parts of bambangan (Mangifera pajang) and tarap (Artocarpus odoratissimus). Food Chemistry, 113(2), 479–483.

    Article  Google Scholar 

  • Bekhit, A. E. D., Lingming, K., Mason, S. L., Zhou, J. H., & Sedcole, J. R. (2013). Upgrading the utilization of brassica wastes: physicochemical properties and sensory evaluation of fermented brassica stalks. International Food Research Journal, 20(4), 1961–1969.

    Google Scholar 

  • Chauhan, O. P., Singh, A., Singh, A., Raju, P. S., & Bawa, A. S. (2011). Effects of osmotic agents on colour, textural, structural, thermal, and sensory properties of apple slices. International Journal of Food Properties, 14(5), 1037–1048. https://doi.org/10.1080/10942910903580884.

    Article  Google Scholar 

  • Chou, S. K., & Chua, K. J. (2001). New hybrid drying technologies for heat sensitive foodstuffs. Trends in Food Science & Technology, 12(10), 359–369.

  • Chua, K. J., Mujumdar, A. S., Chou, S. K., Hawlader, M. N. A., & Ho, J. C. (2000). Convective drying of banana, guava and potato pieces: effect of cyclical variations of air temperature on drying kinetices and color changes. Drying Technology, 18(4-5), 907–936. https://doi.org/10.1080/07373930008917744.

    Article  CAS  Google Scholar 

  • Coşkun, S., Doymaz, İ., Tunçkal, C., & Erdoğan, S. (2017). Investigation of drying kinetics of tomato slices dried by using a closed loop heat pump dryer. Heat and Mass Transfer, 53(6), 1863–1871.

    Article  Google Scholar 

  • Crank, J. (1975). The mathematics of diffusion. New York: Clarendon.

    Google Scholar 

  • Dev, S. R. S., Geetha, P., Orsat, V., Gariépy, Y., & Raghavan, G. S. V. (2011). Effects of microwave-assisted hot air drying and conventional hot air drying on the drying kinetics, color, rehydration, and volatiles of Moringa oleifera. Drying Technology, 29(12), 1452–1458. https://doi.org/10.1080/07373937.2011.587926.

    Article  CAS  Google Scholar 

  • El-Sebaii, A. A., & Shalaby, S. M. (2013). Experimental investigation of an indirect-mode forced convection solar dryer for drying thymus and mint. Energy Conversion and Management, 74, 109–116. https://doi.org/10.1016/j.enconman.2013.05.006.

    Article  Google Scholar 

  • Evin, D. (2011). Microwave drying and moisture diffusivity of white mulberry: experimental and mathematical modeling. Journal of Mechanical Science and Technology, 25(10), 2711–2718. https://doi.org/10.1007/s12206-011-0744-x.

    Article  Google Scholar 

  • Feng, H., Tang, J., & John Dixon-Warren, S. (2000). Determination of moisture diffusivity of red delicious apple tissue by thermogravimetric analysis. Drying Technology, 18(6), 1183–1199. https://doi.org/10.1080/07373930008917771.

    Article  Google Scholar 

  • Finley, J. W. (2003). Reduction of cancer risk by consumption of selenium-enriched plants: enrichment of broccoli with selenium increases the anticarcinogenic properties of broccoli. Journal of Medicinal Food, 6(1), 19–26.

    Article  CAS  Google Scholar 

  • Guan, T. T. Y., Cenkowski, S., & Hydamaka, A. (2005). Effect of drying on the nutraceutical quality of Sea Buckthorn (Hippophae rhamnoides L. ssp. sinensis) leaves. Journal of Food Science, 70(9), 514–518. https://doi.org/10.1111/j.1365-2621.2005.tb08312.x.

    Article  Google Scholar 

  • Hawkes, J., & Flink, J. M. (1978). Osmotic concentration of fruit slices prior to freeze dehydration. Journal of Food Processing & Preservation, 2(4), 265–284. https://doi.org/10.1111/j.1745-4549.1978.tb00562.x.

    Article  CAS  Google Scholar 

  • Hawlader, M. N. A., Perera, C. O., Tian, M., & Yeo, K. L. (2006). Drying of guava and papaya: impact of different drying methods. Drying Technology, 24(1), 77–87. https://doi.org/10.1080/07373930500538725.

    Article  CAS  Google Scholar 

  • Heng, K., Guilbert, S., & Cuq, J. (1990). Osmotic dehydration of papaya: influence of process variables on the product quality. Sciences des Aliments, 10(4), 831–848.

    Google Scholar 

  • İzli, N., Yıldız, G., Ünal, H., Işık, E., & Uylaşer, V. (2014). Effect of different drying methods on drying characteristics, colour, total phenolic content and antioxidant capacity of Goldenberry (L.). International Journal of Food Science & Technology, 49(1), 9–17.

  • Jagota, S. K., & Dani, H. M. (1982). A new colorimetric technique for the estimation of vitamin C using Folin phenol reagent. Analytical Biochemistry, 127(1), 178–182. https://doi.org/10.1016/0003-2697(82)90162-2.

    Article  CAS  PubMed  Google Scholar 

  • Jain, S., Verma, R., Murdia, L., Jain, H., & Sharma, G. (2011). Optimization of process parameters for osmotic dehydration of papaya cubes. Journal of Food Science and Technology, 48(2), 211–217.

    Article  CAS  Google Scholar 

  • Kaya, A., Aydın, O., & Kolaylı, S. (2010). Effect of different drying conditions on the vitamin C (ascorbic acid) content of Hayward kiwifruits (Actinidia deliciosa Planch). Food and Bioproducts Processing, 88(2), 165–173.

    Article  CAS  Google Scholar 

  • Krokida, M., Karathanos, V., & Maioulis, Z. (2000). Effect of osmotic dehydration on viscoelastic properties of apple and banana. Drying Technology, 18(4-5), 951–966.

    Article  CAS  Google Scholar 

  • Kucner, A., Klewicki, R., & Sójka, M. (2013). The influence of selected osmotic dehydration and pretreatment parameters on dry matter and polyphenol content in highbush blueberry (Vaccinium corymbosum L.) fruits. Food and Bioprocess Technology, 6(8), 2031–2047.

    Article  CAS  Google Scholar 

  • Laohavanich, J., & Wongpichet, S. (2008). Thin layer drying model for gas-fired infrared drying of paddy. Songklanakarin Journal of Science & Technology, 30(3), 343–348.

  • Latté, K. P., Appel, K.-E., & Lampen, A. (2011). Health benefits and possible risks of broccoli–an overview. Food and Chemical Toxicology, 49(12), 3287–3309.

    Article  Google Scholar 

  • Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350–382.

  • López, J., Uribe, E., Vega-Gálvez, A., Miranda, M., Vergara, J., Gonzalez, E., et al. (2010). Effect of air temperature on drying kinetics, vitamin C, antioxidant activity, total phenolic content, non-enzymatic browning and firmness of blueberries variety O´Neil. Food and Bioprocess Technology, 3(5), 772–777. https://doi.org/10.1007/s11947-009-0306-8.

    Article  CAS  Google Scholar 

  • Martín-Cabrejas, M. A., Aguilera, Y., Pedrosa, M. M., Cuadrado, C., Hernández, T., Díaz, S., et al. (2009). The impact of dehydration process on antinutrients and protein digestibility of some legume flours. Food Chemistry, 114(3), 1063–1068. https://doi.org/10.1016/j.foodchem.2008.10.070.

    Article  CAS  Google Scholar 

  • Md Salim, N. S., Gariѐpy, Y., & Raghavan, V. (2014). Microwave-assisted hot air drying characteristics of osmotically dehydrated broccoli stalk slices. In: Proceedings of the 19th International Drying Symposium (IDS 2014), August 24–27. Lyon, France: Université Claude Bernard Lyon. 

  • Md Salim, N. S., Garièpy, Y., & Raghavan, V. (2016a). Design of continuous flow osmotic dehydration and its performance on mass transfer exchange during osmotic dehydration of broccoli stalk slices. Food and Bioprocess Technology, 9(9), 1455–1470. https://doi.org/10.1007/s11947-016-1732-z.

    Article  Google Scholar 

  • Md Salim, N. S., Garièpy, Y., & Raghavan, V. (2016b). Effects of operating factors on osmotic dehydration of broccoli stalk slices. Cogent Food & Agriculture, 2(1), 1134025. https://doi.org/10.1080/23311932.2015.1134025.

    Article  CAS  Google Scholar 

  • Nora, S. M. S., Ashutosh, S., & Vijaya, R. (2017). Potential utilization of fruit and vegetable wastes for food through drying or extraction techniques. Novel Techniques in Nutrition and Food Science, 1(2), 1–13.

    Google Scholar 

  • Oliveira, S. M., Ramos, I. N., Brandão, T. R., & Silva, C. L. (2015). Effect of air-drying temperature on the quality and bioactive characteristics of dried Galega kale (Brassica oleracea L. var. Acephala). Journal of Food Processing & Preservation, 39(6), 2485–2496. https://doi.org/10.1111/jfpp.12498.

    Article  CAS  Google Scholar 

  • Orsat, V., Yang, W., Changrue, V., & Raghavan, G. S. V. (2007). Microwave-assisted drying of biomaterials. Food and Bioproducts Processing, 85(3), 255–263.

  • Phisut, N., Rattanawedee, M., & Aekkasak, K.-o. (2013). Effect of different osmotic agents on the Physical, chemical and sensory properties of osmo-dried cantaloupe. Chiang Mai Journal of Science, 40(3), 427–439.

    Google Scholar 

  • Rabha, D. K., Muthukumar, P., & Somayaji, C. (2017). Experimental investigation of thin layer drying kinetics of ghost chilli pepper (Capsicum Chinense Jacq.) dried in a forced convection solar tunnel dryer. Renewable Energy, 105, 583–589. https://doi.org/10.1016/j.renene.2016.12.091.

    Article  Google Scholar 

  • Raghavan, V., & Orsat, V. (2008). Nonconventional heating sources during drying. In C. Ratti (Ed.), Advances in food dehydration (pp. 401–422). Boca Raton, Florida: CRC Press.

  • Sharma, K. D., Stähler, K., Smith, B., & Melton, L. (2011). Antioxidant capacity, polyphenolics and pigments of broccoli-cheese powder blends. Journal of Food Science and Technology, 48(4), 510–514. https://doi.org/10.1007/s13197-010-0211-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, B., Chaturvedi, S., Walia, S., Kaushik, G., & Thakur, S. (2011). Antioxidant potential of broccoli stalk: a preliminary investigation. Mediterranean Journal of Nutrition and Metabolism, 4(3), 227–230.

    Article  Google Scholar 

  • Singh, A., Nair, G. R., Rahimi, J., Gariepy, Y., & Raghavan, V. (2013). Effect of static high electric field pre-treatment on microwave-assisted drying of potato slices. Drying Technology, 31(16), 1960–1968. https://doi.org/10.1080/07373937.2013.805142.

    Article  CAS  Google Scholar 

  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144–158.

    CAS  Google Scholar 

  • Statistics Canada (2017). In Table CANSIM 001-0013 Area, production and farm gate value of vegetables. Retrieved January 15, 2018, from https://www.statcan.gc.ca/.

  • Tello-Ireland, C., Lemus-Mondaca, R., Vega-Gálvez, A., López, J., & Di Scala, K. (2011). Influence of hot-air temperature on drying kinetics, functional properties, colour, phycobiliproteins, antioxidant capacity, texture and agar yield of alga Gracilaria chilensis. LWT - Food Science and Technology, 44(10), 2112–2118. https://doi.org/10.1016/j.lwt.2011.06.008.

    Article  CAS  Google Scholar 

  • Tonon, R. V., Baroni, A. F., & Hubinger, M. D. (2007). Osmotic dehydration of tomato in ternary solutions: Influence of process variables on mass transfer kinetics and an evaluation of the retention of carotenoids. Journal of Food Engineering, 82(4), 509–517. https://doi.org/10.1016/j.jfoodeng.2007.03.008.

    Article  Google Scholar 

  • Topcu, Y., Dogan, A., Kasimoglu, Z., Sahin-Nadeem, H., Polat, E., & Erkan, M. (2015). The effects of UV radiation during the vegetative period on antioxidant compounds and postharvest quality of broccoli (Brassica oleracea L.). Plant Physiology and Biochemistry, 93(2015), 56–65. https://doi.org/10.1016/j.plaphy.2015.02.016.

    Article  CAS  PubMed  Google Scholar 

  • Veeranki, O. L., Bhattacharya, A., Tang, L., Marshall, J. R., & Zhang, Y. (2015). Cruciferous vegetables, isothiocyanates, and prevention of bladder cancer. [Review]. Current Pharmacology Reports, 1(4), 272–282. https://doi.org/10.1007/s40495-015-0024-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vega-Gálvez, A., Di Scala, K., Rodríguez, K., Lemus-Mondaca, R., Miranda, M., López, J., et al. (2009). Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum, L. var. Hungarian). Food Chemistry, 117(4), 647–653. https://doi.org/10.1016/j.foodchem.2009.04.066.

    Article  CAS  Google Scholar 

  • Vega-Gálvez, A., Miranda, M., Clavería, R., Quispe, I., Vergara, J., Uribe, E., et al. (2011). Effect of air temperature on drying kinetics and quality characteristics of osmo-treated jumbo squid (Dosidicus gigas). LWT - Food Science and Technology, 44(1), 16–23. https://doi.org/10.1016/j.lwt.2010.06.012.

    Article  CAS  Google Scholar 

  • Vieira, E. R. (1996). Food preparation—an important application of basic chemistry and physics. In E. R. Viera (Ed.), Elementary food science. Food science texts series (pp. 358–374). Boston, Massachusetts: Springer. https://doi.org/10.1007/978-1-4757-5112-3_24.

  • Welti-Chanes, J., Alzamora, S. M., López-Malo, A., & Tapia, M. S. (2000). Minimally processed fruits using hurdle technology. In G. V. Barbosa-C novas & G. W. Gould (Eds.), Innovations in food processing. Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Workneh, T. S., Raghavan, V., & Gariepy, Y. (2011). Microwave assisted hot air ventilation drying of tomato slices. In: International Conference on Food Engineering and Biotechnology, 28–30 September. Singapore: IACSIT Press.

  • Xiao, H.-W., Pang, C.-L., Wang, L.-H., Bai, J.-W., Yang, W.-X., & Gao, Z.-J. (2010). Drying kinetics and quality of Monukka seedless grapes dried in an air-impingement jet dryer. Biosystems Engineering, 105(2), 233–240.

    Article  Google Scholar 

  • Zhao, D., Zhao, C., Tao, H., An, K., Ding, S., & Wang, Z. (2013). The effect of osmosis pretreatment on hot-air drying and microwave drying characteristics of chili (Capsicum annuum L.) flesh. International Journal of Food Science and Technology, 48(8), 1589–1595. https://doi.org/10.1111/ijfs.12128.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Natural Sciences and Engineering Research Council of Canada (NSERC) for the financial support of this study and to Ministry of Education Malaysia and Universiti Malaysia Terengganu for the granted scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nora Salina Md Salim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Md Salim, N.S., Gariѐpy, Y. & Raghavan, V. Effects of Processing on Quality Attributes of Osmo-Dried Broccoli Stalk Slices. Food Bioprocess Technol 12, 1174–1184 (2019). https://doi.org/10.1007/s11947-019-02282-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-02282-2

Keywords

Navigation