Skip to main content
Log in

Improvement of Mass Transfer by Freezing Pre-treatment and Ultrasound Application on the Convective Drying of Beetroot (Beta vulgaris L.)

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

A Correction to this article was published on 03 October 2018

This article has been updated

Abstract

The effects of freezing pre-treatment and ultrasound application during drying on microstructure, drying curves, and bioactive compounds of beetroot have been evaluated. Raw and previously frozen (at − 20 °C) beetroots were convectively dried (40 °C and 1 m/s) with and without ultrasound application using two acoustic densities (16.4 and 26.7 kW/m3), and a diffusional model was proposed to simulate the drying curves. Freezing pre-treatment and ultrasound application caused significant disruptions in the beetroot microstructure and reduced the drying time, enhancing the mass transfer. The external mass transfer coefficient significantly (p < 0.05) increased by 28–49% when ultrasound was applied; moreover, the effective diffusion coefficient significantly (p < 0.05) increased by 60–73% and 204–211%, respectively, due to the ultrasound application on the drying of raw and pre-frozen samples. Freezing caused significant (p < 0.05) increases in betalain and total polyphenol contents and antioxidant activity compared with the raw sample (16–57%), probably due to the release of free forms from the food matrix; meanwhile, drying had the opposite effect (8–54% decrease). Significantly (p < 0.05) higher decreases (32–81%) in bioactive compounds and antioxidant activity were observed when drying was assisted by ultrasound compared with dying without ultrasound. Therefore, freezing pre-treatment and ultrasound application enhanced mass transfer during drying. However, significant changes in quality parameters of the final product were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 03 October 2018

    The original version of this article unfortunately contained an error in the Acknowledgements section.

Abbreviations

AD:

acoustic density (kW/m3)

D e :

effective water diffusion coefficient (m2/s)

dm:

dry matter (kg)

h m :

external mass transfer coefficient (kg/m2 s)

L:

half of the length (m)

n:

number of experimental data

MRE:

mean relative error (%)

S x :

moisture content standard deviation (sample) (kg H2O/kg dm)

S yx :

moisture content standard deviation (calculated) (kg H2O/kg dm)

t:

time (s)

Var:

percentage of explained variance (%)

W:

moisture content (kg H2O/kg dm)

x,y,z:

spatial coordinates (m)

ρ dm :

dry matter density (kg dm/m3)

φ :

relative humidity

0:

initial

∞:

drying air

cal:

calculated

e:

equilibrium

exp:

experimental

l:

local

References

  • Ando, Y., Maeda, Y., Mizutani, K., Wakatsuki, N., Hagiwara, S., & Nabetani, H. (2016). Impact of blanching and freeze-thaw pretreatment on drying rate of carrot roots in relation to changes in cell membrane function and cell wall structure. LWT - Food Science and Technology, 71, 40–46.

    Article  CAS  Google Scholar 

  • AOAC. (2006). Moisture in dried fruits 934.06, 16th ed. Maryland: Association of Analytical Communities.

  • Boukouvalas, C. J., Krokida, M., Maroulis, Z., & Marinos-Kouris, D. (2006). Density and porosity: literature data compilation for foodstuffs. International Journal of Food Properties, 9(4), 715–746.

    Article  Google Scholar 

  • Cai, C., Miao, H., Qian, H., Yao, L., Wang, B., & Wang, Q. (2016). Effects of industrial pre-freezing processing and freezing handling on glucosinolates and antioxidant attributes in broccoli florets. Food Chemistry, 210, 451–456.

    Article  CAS  Google Scholar 

  • Cárcel, J. A., García-Pérez, J. V., Riera, E., & Mulet, A. (2007). Influence of high-intensity ultrasound on drying kinetics of persimmon. Drying Technology, 25(1), 185–193.

    Article  Google Scholar 

  • Cárcel, J. A., García-Pérez, J. V., Riera, E., & Mulet, A. (2011). Improvement of convective drying of carrot by applying power ultrasound—influence of mass load density. Drying Technology, 29(2), 174–182.

    Article  Google Scholar 

  • de la Fuente-Blanco, S., Riera-Franco de Sarabia, E., Acosta-Aparicio, V. M., Blanco-Blanco, A. & Gallego-Juárez, J. A. (2006). Food drying process by power ultrasound. Ultrasonics, 44, e523–e527.

    Article  Google Scholar 

  • Eim, V. S., Urrea, D., Rosselló, C., García-Pérez, J. V., Femenia, A., & Simal, S. (2013). Optimization of the drying process of carrot (Daucus carota v. Nantes) on the basis of quality criteria. Drying Technology, 31(8), 951–962.

    Article  CAS  Google Scholar 

  • Eshtiaghi, M. N., Stute, R., & Knorr, D. (1994). High-pressure and freezing pretreatment effects on drying, rehydration, texture and color of green beans, carrots and potatoes. Journal of Food Science, 59(6), 1168–1170.

    Article  CAS  Google Scholar 

  • Fernández-López, J. A., & Almela, L. (2001). Application of high-performance liquid chromatography to the characterization of the betalain pigments in prickly pear fruits. Journal of Chromatography A, 913(1), 415–420.

    Article  Google Scholar 

  • Figiel, A. (2010). Drying kinetics and quality of beetroots dehydrated by combination of convective and vacuum-microwave methods. Journal of Food Engineering, 98(4), 461–470.

    Article  Google Scholar 

  • Fijalkowska, A., Nowacka, M., & Witrowa-rajchert, D. (2015). Effect of ultrasound waves on drying process and selected properties of beetroot tissue. Food Science Technology Quality, 2(99), 138–149.

    Google Scholar 

  • Gamboa-Santos, J., Montilla, A., Cárcel, J. A., Villamiel, M., & Garcia-Perez, J. V. (2014). Air-borne ultrasound application in the convective drying of strawberry. Journal of Food Engineering, 128, 132–139.

    Article  Google Scholar 

  • García-Pérez, J. V., Rosselló, C., Cárcel, J., De la Fuente, S., & Mulet, A. (2006). Effect of air temperature on convective drying assisted by high power ultrasound. Defect and Diffusion Forum, Trans Tech Publications, 258, 563–574.

    Article  Google Scholar 

  • García-Pérez, J. V., Cárcel, J. A., Riera, E., & Mulet, A. (2009). Influence of the applied acoustic energy on the drying of carrots and lemon peel. Drying Technology, 27(2), 281–287.

    Article  Google Scholar 

  • García-Pérez, J. V., Ortuño, C., Puig, A., Cárcel, J. A., & Perez-Munuera, I. (2012). Enhancement of water transport and microstructural changes induced by high-intensity ultrasound application on orange peel drying. Food and Bioprocess Technology, 5(6), 2256–2265.

    Article  Google Scholar 

  • Gengatharan, A., Dykes, G. A., & Choo, W. S. (2015). Betalains: natural plant pigments with potential application in functional foods. LWT - Food Science and Technology, 64(2), 645–649.

    Article  CAS  Google Scholar 

  • Gokhale, S. V., & Lele, S. S. (2014). Betalain content and antioxidant activity of beta vulgaris: effect of hot air convective drying and storage. Journal of Food Processing and Preservation, 38(1), 585–590.

    Article  CAS  Google Scholar 

  • González-Centeno, M. R., Jourdes, M., Femenia, A., Simal, S., Rosselló, C., & Teissedre, P.-L. (2012). Proanthocyanidin composition and antioxidant potential of the stem winemaking byproducts from 10 different grape varieties (Vitis vinifera L.) Journal of Agricultural and Food Chemistry, 60(48), 11850–11858.

    Article  Google Scholar 

  • Heredia, J. B., & Cisneros-Zevallos, L. (2009). The effects of exogenous ethylene and methyl jasmonate on the accumulation of phenolic antioxidants in selected whole and wounded fresh produce. Food Chemistry, 115(4), 1500–1508.

    Article  CAS  Google Scholar 

  • Janiszewska, E. (2014). Microencapsulated beetroot juice as a potential source of betalain. Powder Technology, 264, 190–196.

    Article  CAS  Google Scholar 

  • Kaleta, A., & Górnicki, K. (2010). Some remarks on evaluation of drying models of red beet particles. Energy Conversion and Management, 51(12), 2967–2978.

    Article  Google Scholar 

  • Kaur, K., & Singh, A. (2014). Drying kinetics and quality characteristics of beetroot slices under hot air followed by microwave finish drying. African Journal of Agricultural Research, 9(12), 1036–1044.

    Article  Google Scholar 

  • Kowalski, S. J., & Łechtańska, J. M. (2015). Drying of red beetroot after osmotic pretreatment: kinetics and quality considerations. Chemical and Process Engineering, 36(3), 345–354.

    Article  CAS  Google Scholar 

  • Lewicki, P. P. (2006). Design of hot air drying for better foods. Trends in Food Science & Technology, 17(4), 153–163.

    Article  CAS  Google Scholar 

  • Li, N., Lu, X., Pei, H., & Qiao, X. (2015). Effect of freezing pretreatment on the processing time and quality of black garlic. Journal of Food Process Engineering, 38(4), 329–335.

    Article  CAS  Google Scholar 

  • Mayor, L., Pissarra, J., & Sereno, A. (2008). Microstructural changes during osmotic dehydration of parenchymatic pumpkin tissue. Journal of Food Engineering, 85(3), 326–339.

    Article  Google Scholar 

  • Nayak, C. A., Suguna, K., Narasimhamurthy, K., & Rastogi, N. K. (2007). Effect of gamma irradiation on histological and textural properties of carrot, potato and beetroot. Journal of Food Engineering, 79(3), 765–770.

    Article  Google Scholar 

  • Nistor, O.-V., Seremet, L., Andronoiu, D. G., Rudi, L., & Botez, E. (2017). Influence of different drying methods on the physicochemical properties of red beetroot (Beta vulgaris L. var. Cylindra). Food Chemistry, 236, 59–67.

    Article  CAS  Google Scholar 

  • Onwude, D. I., Hashim, N., & Chen, G. (2016). Recent advances of novel thermal combined hot air drying of agricultural crops. Trends in Food Science & Technology, 57, 132–145.

    Article  CAS  Google Scholar 

  • Ozuna, C., Cárcel, J. A., García-Pérez, J. V., & Mulet, A. (2011). Improvement of water transport mechanisms during potato drying by applying ultrasound. Journal of the Science of Food and Agriculture, 91(14), 2511–2517.

    Article  CAS  Google Scholar 

  • Paciulli, M., Ganino, T., Pellegrini, N., Rinaldi, M., Zaupa, M., Fabbri, A., & Chiavaro, E. (2015). Impact of the industrial freezing process on selected vegetables—part I. Structure, texture and antioxidant capacity. Food Research International, 74, 329–337.

    Article  CAS  Google Scholar 

  • Paciulli, M., Medina-Meza, I. G., Chiavaro, E., & Barbosa-Cánovas, G. V. (2016). Impact of thermal and high pressure processing on quality parameters of beetroot (Beta vulgaris L.) LWT - Food Science and Technology, 68, 98–104.

    Article  CAS  Google Scholar 

  • Phothiset, S., & Charoenrein, S. (2014). Effects of freezing and thawing on texture, microstructure and cell wall composition changes in papaya tissues. Journal of the Science of Food and Agriculture, 94(2), 189–196.

    Article  CAS  Google Scholar 

  • Puig, A., Pérez-Munuera, I., Cárcel, J., Hernando, I., & García-Pérez, J. (2012). Moisture loss kinetics and microstructural changes in eggplant (Solanum melongena L.) during conventional and ultrasonically assisted convective drying. Food and Bioproducts Processing, 90(4), 624–632.

    Article  Google Scholar 

  • Ramírez, C., Troncoso, E., Muñoz, J., & Aguilera, J. M. (2011). Microstructure analysis on pre-treated apple slices and its effect on water release during air drying. Journal of Food Engineering, 106(3), 253–261.

    Article  Google Scholar 

  • Ramos, I. N., Silva, C. L. M., Sereno, A. M., & Aguilera, J. M. (2004). Quantification of microstructural changes during first stage air drying of grape tissue. Journal of Food Engineering, 62(2), 159–164.

    Article  Google Scholar 

  • Ravichandran, K., Saw, N. M. M. T., Mohdaly, A. A. A., Gabr, A. M. M., Kastell, A., Riedel, H., Cai, Z., Knorr, D., & Smetanska, I. (2013). Impact of processing of red beet on betalain content and antioxidant activity. Food Research International, 50(2), 670–675.

    Article  CAS  Google Scholar 

  • Rodríguez, Ó., Eim, V. S., Simal, S., Femenia, A., & Rosselló, C. (2013). Validation of a difussion model using moisture profiles measured by means of TD-NMR in apples (Malus domestica). Food and Bioprocess Technology, 6(2), 542–552.

    Article  Google Scholar 

  • Rodríguez, Ó., Santacatalina, J. V., Simal, S., Garcia-Perez, J. V., Femenia, A., & Rosselló, C. (2014). Influence of power ultrasound application on drying kinetics of apple and its antioxidant and microstructural properties. Journal of Food Engineering, 129, 21–29.

    Article  Google Scholar 

  • Sabarez, H. T., Gallego-Juárez, J. A., & Riera, E. (2012). Ultrasonic-assisted convective drying of apple slices. Drying Technology, 30(9), 989–997.

    Article  Google Scholar 

  • Samoticha, J., Wojdyło, A., & Lech, K. (2016). The influence of different the drying methods on chemical composition and antioxidant activity in chokeberries. LWT - Food Science and Technology, 66, 484–489.

    Article  CAS  Google Scholar 

  • Sripinyowanich, J., & Noomhorm, A. (2013). Effects of freezing pretreatment, microwave-assisted vibro-fluidized bed drying and drying temperature on instant rice production and quality. Journal of Food Processing and Preservation, 37(4), 314–324.

    Article  Google Scholar 

  • Stintzing, F. C., Herbach, K. M., Mosshammer, M. R., Carle, R., Yi, W., Sellappan, S., Akoh, C. C., Bunch, R., & Felker, P. (2005). Color, betalain pattern, and antioxidant properties of cactus pear (Opuntia spp.) clones. Journal of Agricultural and Food Chemistry, 53(2), 442–451.

    Article  CAS  Google Scholar 

  • Székely, D., Illés, B., Stéger-Máté, M., & Monspart-Sényi, J. (2016). Effect of drying methods for inner parameters of red beetroot (Beta vulgaris L.). Acta Universitatis Sapientiae, Alimentaria, 9(1), 60–68.

    Article  Google Scholar 

  • Wootton-Beard, P. C., & Ryan, L. (2011). A beetroot juice shot is a significant and convenient source of bioaccessible antioxidants. Journal of Functional Foods, 3(4), 329–334.

    Article  CAS  Google Scholar 

  • Wruss, J., Waldenberger, G., Huemer, S., Uygun, P., Lanzerstorfer, P., Müller, U., Höglinger, O., & Weghuber, J. (2015). Compositional characteristics of commercial beetroot products and beetroot juice prepared from seven beetroot varieties grown in Upper Austria. Journal of Food Composition and Analysis, 42, 46–55.

    Article  CAS  Google Scholar 

  • Zielinska, M., Sadowski, P., & Błaszczak, W. (2015). Freezing/thawing and microwave-assisted drying of blueberries (Vaccinium corymbosum L.) LWT - Food Science and Technology, 62(1, Part 2), 555–563.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Simal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vallespir, F., Cárcel, J.A., Marra, F. et al. Improvement of Mass Transfer by Freezing Pre-treatment and Ultrasound Application on the Convective Drying of Beetroot (Beta vulgaris L.). Food Bioprocess Technol 11, 72–83 (2018). https://doi.org/10.1007/s11947-017-1999-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-1999-8

Keywords

Navigation