Skip to main content
Log in

Potential of UV-C Light for Preservation of Cut Apples Fortified with Calcium: Assessment of Optical and Rheological Properties and Native Flora Dynamics

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The use of UV-C light (fluence 11.2 kJ/m2) to preserve calcium fortified cut apples was investigated. Impregnation treatments with calcium salts at atmospheric pressure (AI) (with and without previous blanching (B)) were performed to incorporate calcium into the apple matrix. An antibrowning dipping (AD) (ascorbic acid/calcium chloride solution) was also applied to non-blanched fortified apples. The impact of treatments on surface color, viscoelastic properties, microstructure, and native flora during refrigerated storage was analyzed. UV-C light was useful not only reducing microbial load of calcium-enriched apples (between 1.3 log cycles to non-detectable levels) but decreasing microorganisms’ growth (between 0.7 to 2.6 log cycles as compared with apples without UV-C exposure) during 7-day storage at 5 °C. AI caused marked browning, and not significant additional color changes due to UV-C exposure were observed. Blanching not only facilitated calcium incorporation (four times higher than in non-blanched tissues) inside the fruit but also helped in reducing browning. AD was also effective to minimize color changes but diminished the UV-C germicidal effect. AD + AI and B + AI treatments negatively affected viscoelastic properties, being the changes more pronounced in heated tissues. Both storage and loss moduli were reduced due to processing and during storage of samples, indicating that fortified apple tissues became less elastic and less viscous. However, exposure of AD + AI and B + AI apples to UV-C did not modify creep response neither at 0 day nor at day 7 and also had a negligible effect on dynamic spectra. Modifications in rheological properties and color were partially ascribed to microstructure features (breakage of cellular membranes with loss of functional cell compartmentalization and loss of turgor; modifications in cell walls). These findings suggest that UV-C irradiation could be used for prolonging shelf life of calcium fortified cut apples with minimal or negligible impact on color and viscoelastic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alandes, I., Hernando, I., Quiles, A., Perez-Munuera, I., & Lluch, M. A. (2006). Cell wall stability of fresh-cut Fuji apples treated with calcium lactate. Journal of Food Science, 71, 615–620.

    Article  Google Scholar 

  • Allende, A., & Artes, F. (2003). UV-C radiation as a novel technique for keeping quality of fresh processed “Lollo Rosso” lettuce. Food Research International, 36, 739–746.

    Article  Google Scholar 

  • Alzamora, S. M., Castro, M. A., Nieto, A. B., Vidales, S. L., & Salvatori, D. M. (2000). The rol of tissue microstructure in the textural characteristics of minimally processed fruits. In S. M. Alzamora, M. S. Tapia, & A. López-Malo (Eds.), Minimally processed fruits and vegetables (pp. 153–171). Maryland: Aspen Publishers Inc.

    Google Scholar 

  • Alzamora, S. M., Salvatori, D. M., Tapia, M. S., López-Malo, A., Welti-Chanes, J., & Fito, P. (2005). Novel functional foods from vegetable matrices impregnated with biologically active compounds. Journal of Food Engineering, 67, 205–214.

    Article  Google Scholar 

  • Alzamora, S. M., Viollaz, P. E., Martínez, V. Y., Nieto, A. B., & Salvatori, D. M. (2008). Exploring the linear viscoelastic properties structure relationship in processed fruit tissues. In G. E. Gutiérrez-López, G. V. Barbosa-Cánovas, J. Welti-Chanes, & E. Parada-Arias (Eds.), Food Engineering: Integrated Approaches (pp. 133–214). New York: Springer.

    Google Scholar 

  • Anino, S. V., Salvatori, D. M., & Alzamora, S. M. (2006). Changes in calcium level and mechanical properties of apple tissue due to impregnation with calcium salts. Food Research International, 39, 154–164.

    Article  CAS  Google Scholar 

  • Bintsis, T., Litopoulou-Tzanetaki, E., & Robinson, R. (2000). Existing and potential applications of ultraviolet light in the food industry. A critical review. Journal of the Science of Food and Agriculture, 80, 1–9.

    Article  Google Scholar 

  • Bourne, M. C. (1976). Texture of fruits and vegetables. In J. M. DeMan, P. W. Voisey, V. F. Rasper, & D. W. Stanley (Eds.), Rheology and texture in food quality (pp. 275–307). New York: Van Nostrand Reinhold/AVI.

    Google Scholar 

  • Buera, M. P., Lozano, R. D., & Petriella, C. (1986). Definition of colour in the non enzymatic browning process. Die Farbe, 32, 318–322.

    Google Scholar 

  • Erkan, M., Wang, C. Y., & Krizek, D. T. (2001). UV-C irradiation reduces microbial populations and deterioration in Cucurbita pepo fruit tissue. Environmental and Experimental Botany, 45, 1–9.

    Article  Google Scholar 

  • Ervin, R., Wang, C.Y., Wright, J.D., Kennedy-Stephenson, J. (2004). Dietary intake of selected minerals for the United States population: 1999–2000. Advance data from Vital and Health Statistics, National Center for Health Statistics, Hyattsville, MD

  • Fonseca, M. J., & Rushing, J. W. (2006). Effect of Ultraviolet-C light on quality and microbial population of fresh-cut watermelon. Postharvest Biology and Technology, 40, 256–261.

    Article  CAS  Google Scholar 

  • Gómez, P. L., Alzamora, S. M., Castro, M. A., & Salvatori, D. M. (2010). Effect of ultraviolet-C light dose on quality of cut-apple: microorganism, color and compression behavior. Journal of Food Engineering, 98, 60–70.

    Article  Google Scholar 

  • Gómez, P. L., Garcia-Loredo, A., Nieto, A. B., Salvatori, D. M., Guerrero, S., & Alzamora, S. M. (2012a). Effect of pulsed light combined with an antibrowning pretreatment on quality of fresh cut apple. Innovative Food Science and Emerging Technologies, 16, 102–112.

    Article  Google Scholar 

  • Gómez, P. L., Salvatori, D., García Loredo, A., & Alzamora, S. M. (2012b). Pulsed light treatment of cut apple: dose effect on color, structure and microbiological stability. Food and Bioprocess Technology, 5, 2311–2322.

    Article  Google Scholar 

  • Gómez-López, V. M., Ragaert, P., Debevere, J., & Devlieghere, F. (2008). Decontamination methods to prolong the shelf-life of minimally processed vegetables, state-of-the-art. Critical Reviews in Food Science and Nutrition, 48, 487–495.

    Article  Google Scholar 

  • González-Fésler, M., Salvatori, D., Gómez, P. L., & Alzamora, S. M. (2008). Convective air drying of apples as affected by blanching and calcium impregnation. Journal of Food Engineering, 87, 323–332.

    Article  Google Scholar 

  • Gras, M. L., Vidal, D., Btoret, N., Chiralt, A., & Fito, P. (2003). Calcium fortification of vegetables by vacuum impregnation. Interactions with cellular matrix. Journal of Food Engineering, 56, 279–284.

    Article  Google Scholar 

  • Gueguen, L., & Pointillart, A. (2000). The biovailability of dietary calcium. Journal of the American Collage of Nutrition, 19, 119S–136S.

    Article  CAS  Google Scholar 

  • Guerrero-Beltrán, J. A., & Barbosa-Cánovas, G. V. (2004). Review: advantages and limitations on processing foods by UV light. Food Science and Technology International, 10, 137–147.

    Article  Google Scholar 

  • Institute of Medicine of the National Academies. (2010). Dietary reference intakes for calcium and vitamin D. Washington: Institute of Medicine of the National Academies.

    Google Scholar 

  • Jackman, R. L., & Stanley, D. W. (1995). Creep behaviour of tomato pericarp tissue as influenced by ambient temperature ripening and chilled storage. Journal of Texture Studies, 26, 537–552.

    Article  Google Scholar 

  • John, M. A., & Dey, P. M. (1986). Postharvest changes in fruit cell walls. Advances in Food Research, 30, 139–193.

    Article  CAS  Google Scholar 

  • Joshi, A. P. K., Rupasinghe, H. P., & Pitts, N. L. (2010). Sensory and nutritional quality of the apple snacks prepared by vacuum impregnation process. Journal of Food Quality, 33, 758–767.

    Article  CAS  Google Scholar 

  • Knox, T. A., Kassarjian, Z., Dawson-Hughes, B., Golner, G. E., Dallal, G. E., Arora, S., & Russel, R. M. (1991). Calcium absorption in elderly subjects on high and low fiber diets: effect of gastric acidity. American Journal of Clinical Nutrition, 53, 1480–1486.

    CAS  Google Scholar 

  • Lado, B. H., & Yousef, A. E. (2002). Alternative food-preservation technologies: efficacy and mechanisms. Microbes Infection, 4, 433–440.

    Article  Google Scholar 

  • Leitsner, L., & Gould, G. W. (2002). Hurdle Technologies. Combination Treatments for Food Stability, Safety and Quality. New York: Kluwer Academic/ Plenum Publishers.

    Google Scholar 

  • Luna-Guzmán, I., & Barrett, D. M. (2000). Comparison of calcium chloride and calcium lactate effectiveness in maintaining shelf stability and quality of fresh-cut cantaloupe. Postharvest Biology and Technology, 19, 61–72.

    Article  Google Scholar 

  • Manzocco, L., Da Pieve, S., Bertolini, A., Bartolomeoli, I., Maifreni, M., Vianello, A., & Nicoli, M. C. (2011). Surface decontamination of fresh-cut apple by UV-C light exposure: effects on structure, colour and sensory properties. Postharvest Biology and Technology, 61, 165–171.

    Article  CAS  Google Scholar 

  • Martín-Diana, A. B., Rico, D., Frías, J. M., Barat, J. M., Henehan, G. T. M., & Barry-Ryan, C. (2007). Calcium for extending the shelf life of fresh whole and minimally processed fruits and vegetables: a review. Trends in Food Science & Technology, 18, 210–218.

    Article  Google Scholar 

  • Martinez VY (2005) Alteraciones microestructurales y ultraestructurales de tejidos vegetales mínimamente procesados. Impacto en las características mecánicas. PhD thesis, Universidad de Buenos Aires, Argentina

  • Martinez, V. Y., Nieto, A. B., Castro, M. A., Salvatori, D., & Alzamora, S. M. (2007). Viscoelastic characteristics of Granny Smith apple during glucose osmotic dehydratation. Journal of Food Engineering, 83, 394–403.

    Article  Google Scholar 

  • Mittal, J. P., & Mohsenin, N. N. (1987). Rheological characterization of apple cortex. Journal of Texture Studies, 18, 65–93.

    Article  Google Scholar 

  • Ortiz, C., Salvatori, D. M., & Alzamora, S. M. (2003). Mushroom tissue as matrix for calcium incorporation by vacuum impregnation. Latin American Applied Research, 33, 281–287.

    CAS  Google Scholar 

  • Ostos, S. L. A., Díaz, A. C. M., & Suarez, H. M. (2012). Evaluation process in different conditions of mango fortification (Tommy Atkins) with calcium by vacuum impregnation. Revista Chilena de Nutricion, 39, 181–190.

    Article  Google Scholar 

  • Pacín, A., Martínez, E., Martín, P., de Portela, M. L., & Neira, M. S. (1999). Consumo de alimentos e ingesta de algunos nutrientes en la población de la Universidad Nacional de Luján, Argentina. Archivos Latinoamericanos de Nutrición, 49, 31–39.

    Google Scholar 

  • Park, S., Zhao, Y., Leonard, S., & Traber, M. G. (2005). Vitamin E and mineral fortification in fresh-cut apples (Fuji) using vacuum impregnation. Nutrition & Food Science, 35, 393–402.

    Article  Google Scholar 

  • Pitt, R. E. (1992). Viscoelastic properties of fruits and vegetables. In M. A. Rao & J. F. Steffe (Eds.), Viscoelastic Properties of Foods (pp. 3–47). London: Elsevier Applied Science.

    Google Scholar 

  • Ponting, J. D., Jackson, R., & Watters, G. (1972). Refrigerated apple slices: preservative effects of ascorbic acid, calcium and sulfites. Journal of Food Science, 37, 434–436.

    Article  CAS  Google Scholar 

  • Rafferty, K., Walters, G., & Heaney, R. P. (2007). Calcium fortificants: overview and strategies for improving calcium nitriture of the U.S. population. Journal of Food Science, 72, 152–158.

    Article  Google Scholar 

  • Rahn, R. O. (1997). Potassium iodide as a chemical actinometer for 254 nm radiation: use of iodate as an electron scavenger. Photochemistry and Photobiology, 66, 450–455.

    Article  CAS  Google Scholar 

  • Rico, D., Martin-Diana, A. B., Henehan, G. T. M., Frias, J., Barat, J. M., & Barry-Ryan, C. (2007). Improvement in texture using calcium lactate and heat-shock treatments for stored ready-to eat carrots. Journal of Food Engineering, 79, 1196–1206.

    Article  CAS  Google Scholar 

  • Rodoni, L. M., Concellón, A., Chaves, A. R., & Vicente, A. R. (2012). Use of UV-C treatments to maintain quality and extend the shelf-life of green fresh-cut bell pepper (Capsicum annuum L.). Journal of Food Science, 77, C632–C639.

    Article  CAS  Google Scholar 

  • Salvatori, D. M., González-Fesler, M., Weisstaub, A., Portela, M. L., & Alzamora, S. M. (2007). Uptake kinetics and absorption of calcium in apple matrices. Food Science and Technology International, 13, 333–340.

    Article  CAS  Google Scholar 

  • Schenk, M., Guerrero, S., & Alzamora, S. M. (2008). Response of some microorganisms to ultraviolet treatment on fresh-cut pear. Food and Bioprocess Technology, 1, 384–392.

    Article  Google Scholar 

  • Schenk, M., Raffellini, S., Guerrero, S., Blanco, G. A., & Alzamora, S. M. (2011). Inactivation of Escherichia coli, Listeria innocua, and Saccharomyces cerevisiae by UV-C light: study of cell injury by flow cytometry. LWT--Food Science and Technology, 44, 191–198.

    Article  CAS  Google Scholar 

  • Schenk, M., García Loredo, A., Raffellini, S., Alzamora, S. M., & Guerrero, S. N. (2012). The effect of UV-C in combination with H2O2 treatments on microbial response and quality parameters of fresh cut pear discs. International Journal of Food Science & Technology, 47, 1842–1851.

    Article  CAS  Google Scholar 

  • Shama, G. (2006). Ultraviolet light. In Y. H. Hui (Ed.), Handbook of Food Science, Technology and Engineering (Vol. 3, pp. 122-1–122-14). Florida: CRC / Taylor & Francis, Boca Raton.

    Google Scholar 

  • Sherman, P. (1970). Industrial rheology. New York: Academic Press.

  • Tapia, M.S., Schulz, E., Gómez, V., Lopez-Malo, A., & Welti-Chanes, J. (2003). A new approach to vacuum impregnation and functional foods: melon impregnated with calcium and zinc. In: IFT (Institute of Food Technologist) Annual Meeting, Chicago, 60D-2.

  • Theobald, H. E. (2005). Dietary calcium and health. British Nutrition Foundation Nutrition Bulletin, 30, 237–277.

    Article  Google Scholar 

  • USDA-FDA (2002). Ultraviolet radiation for the processing and treatment of food. Code of Federal Regulations, 21 Part, 179.39.

  • Zhai, F., Yang, X., & Ge, K. (2006). Report of Chinese National Survey of Nutrition and Health in 2002, Dietary Intake. Beijing: People’s Health Press.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from University of Buenos Aires, CONICET, Agencia Nacional de Promoción Científica y Tecnológica of Argentina and BID.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stella M. Alzamora.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez, P.L., Schenk, M.L., Salvatori, D.M. et al. Potential of UV-C Light for Preservation of Cut Apples Fortified with Calcium: Assessment of Optical and Rheological Properties and Native Flora Dynamics. Food Bioprocess Technol 8, 1890–1903 (2015). https://doi.org/10.1007/s11947-015-1545-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1545-5

Keywords

Navigation