Skip to main content
Log in

Modelling the Influence of Origin, Packing and Storage on Water Activity, Colour and Texture of Almonds, Hazelnuts and Walnuts Using Artificial Neural Networks

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The present work assessed the influence of different factors on some physical and chemical properties of nuts. The factors evaluated were the presence or absence of the inner skin, geographical origin, storage conditions (ambient temperature, in a stove at 30 and 50 °C, in a chamber at 30 and 50 °C and 90 % RH, refrigerated and freezing) and type of package (none, low density polyethylene and low density polyethylene). The fruits studied were almonds, hazelnuts and walnuts from different countries. The properties measured were moisture content, water activity, colour coordinates (L*, a* and b*) and texture parameters (hardness and friability). Experimental data were modelled using neural networks. The results showed that the almonds from Spain and Romania had aw greater than 0.6, and therefore, its stability was not guaranteed, contrarily to the other samples that presented values of aw lower than 0.6. The colour coordinate lightness varied from 40.60 to 49.30 in the fresh samples but decreased during storage, indicating darkening. In general, an increase in hardness and friability was observed with the different storage conditions. Neuron weight analysis has shown that the origin was a good predictor for moisture content and texture; whereas, the storage condition was a good predictor for aw and colour. In conclusion, it was possible to verify that the properties of nuts are very different depending on origin; they are better preserved at lower temperatures and the type of package used did not impact the properties studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Matlab is a registered trademark of Mathworks. www.mathworks.com.

References

  • Alasalvar, C., Amaral, J. S., Satır, G., & Shahidi, F. (2009). Lipid characteristics and essential minerals of native Turkish hazelnut varieties (Corylus avellana L.). Food Chemistry, 113, 919–925. doi:10.1016/j.foodchem.2008.08.019.

    Article  CAS  Google Scholar 

  • Almeida, C. (2013). Efeitos das condições de conservação nas características de frutos secos. Portugal: Trabalho de Estágio. Escola Superior Agrária de Viseu.

    Google Scholar 

  • Bolling, B. W., Chen, C.-Y. O., McKay, D. L., & Blumberg, J. B. (2011). Tree nut phytochemicals: composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts. Nutrition Research Reviews, 24, 244–275. doi:10.1017/S095442241100014X.

    Article  CAS  Google Scholar 

  • Çelekli, A., Birecikligil, S. S., Geyik, F., & Bozkurt, H. (2012). Prediction of removal efficiency of Lanaset Red G on walnut husk using artificial neural network model. Bioresource Technology, 103, 64–70. doi:10.1016/j.biortech.2011.09.106.

    Article  Google Scholar 

  • Ceylan, İ., & Aktaş, M. (2008). Modeling of a hazelnut dryer assisted heat pump by using artificial neural networks. Applied Energy, 85, 841–854. doi:10.1016/j.apenergy.2007.10.013.

    Article  Google Scholar 

  • Chen, X. D., & Mujundar, A. S. (2008). Drying technologies in food processing. New York: Wiley-Blackwell.

    Google Scholar 

  • Christopoulos, M. V., & Tsantili, E. (2011). Effects of temperature and packaging atmosphere on total antioxidants and colour of walnut (Juglans regia L.) kernels during storage. Scientia Horticulturae, 131, 49–57. doi:10.1016/j.scienta.2011.09.026.

    Article  CAS  Google Scholar 

  • Chutintrasri, B., & Noomhorm, A. (2007). Color degradation kinetics of pineapple puree during thermal processing. LWT - Food Science and Technology, 40, 300–306. doi:10.1016/j.lwt.2005.11.003.

    Article  CAS  Google Scholar 

  • Colaric, M., Veberic, R., Solar, A., Hudina, M., & Stampar, F. (2005). Phenolic acids, syringaldehyde, and juglone in fruits of different cultivars of Juglans regia L. Journal of Agricultural and Food Chemistry, 53, 6390–6396. doi:10.1021/jf050721n.

    Article  CAS  Google Scholar 

  • Freitas-Silva, O., & Venâncio, A. (2011). Brazil nuts: benefits and risks associated with contamination by fungi and mycotoxins. Food Research International, 44, 1434–1440. doi:10.1016/j.foodres.2011.02.047.

    Article  CAS  Google Scholar 

  • Garcı́a-Pascual, P., Mateos, M., Carbonell, V., & Salazar, D. M. (2003). Influence of storage conditions on the quality of shelled and roasted almonds. Biosystems Engineering, 84, 201–209. doi:10.1016/S1537-5110(02)00262-3.

    Article  Google Scholar 

  • Gharibzahedi, S. M. T., Mousavi, S. M., Hamedi, M., & Khodaiyan, F. (2012). Comparative analysis of new Persian walnut cultivars: nut/kernel geometrical, gravimetrical, frictional and mechanical attributes and kernel chemical composition. Scientia Horticulturae, 135, 202–209. doi:10.1016/j.scienta.2011.11.030.

    Article  CAS  Google Scholar 

  • Ghirardello, D., Contessa, C., Valentini, N., Zeppa, G., Rolle, L., Gerbi, V., & Botta, R. (2013). Effect of storage conditions on chemical and physical characteristics of hazelnut (Corylus avellana L.). Postharvest Biology and Technology, 81, 37–43. doi:10.1016/j.postharvbio.2013.02.014.

    Article  CAS  Google Scholar 

  • Goyeneche, R., Agüero, M. V., Roura, S., & Di Scala, K. (2014). Application of citric acid and mild heat shock to minimally processed sliced radish: color evaluation. Postharvest Biology and Technology, 93, 106–113. doi:10.1016/j.postharvbio.2014.02.011.

    Article  CAS  Google Scholar 

  • Grace, M. H., Warlick, C. W., Neff, S. A., & Lila, M. A. (2014). Efficient preparative isolation and identification of walnut bioactive components using high-speed counter-current chromatography and LC-ESI-IT-TOF-MS. Food Chemistry, 158, 229–238. doi:10.1016/j.foodchem.2014.02.117.

    Article  CAS  Google Scholar 

  • Guiné, R. (2011). Drying of pears. Experimental study and process simulation. Germany: LAP Lambert Academic Publishing GmbH & Co.

    Google Scholar 

  • Guiné, R. P. F., & Barroca, M. J. (2012) Effect of drying treatments on texture and color of vegetables (pumpkin and green pepper). Food and Bioproducts Processing, 90(1), 58–63.

  • Guiné, R.P.F., Marques, B.L. (2013). Evaluation of texture of packhams pears. International Journal of Biological, Veterinary, Agricultural and Food Engineering, 7, 274–278.

  • Guiné, R. P., Barroca, M. J., & Silva, V. (2013). Mass transfer properties of pears for different drying methods. International Journal of Food Properties, 16, 251–262. doi:10.1080/10942912.2011.551864.

    Article  Google Scholar 

  • Guiné, R.P.F., Almeida, C.F.F., Correia, P.M.R. (2014a). Evaluation of conservation conditions on nuts properties, in: Proceedinds. Presented at the 9th Baltic Conference on Food Science and Technology, Jelgava, Latvia, pp. 271–275.

  • Guiné, R. P. F., Cruz, A. C., & Mendes, M. (2014b). Convective drying of apples: kinetic study, evaluation of mass transfer properties and data analysis using artificial neural networks. IJFE, 10, 281–299. doi:10.1515/ijfe-2012-0135.

    Article  Google Scholar 

  • Guiné, R. P. F., Barroca, M. J., Gonçalves, F. J., Alves, M., Oliveira, S., & Mendes, M. (2015). Artificial neural network modelling of the antioxidant activity and phenolic compounds of bananas submitted to different drying treatments. Food Chemistry, 168, 454–459. doi:10.1016/j.foodchem.2014.07.094.

    Article  Google Scholar 

  • Hokmabadi, H., & Sedaghati, E. (2014). Safety of food and beverages: nuts. In Y. Motarjemi (Ed.), Encyclopedia of food safety (pp. 340–348). Waltham: Academic Press.

    Chapter  Google Scholar 

  • Hosseinpour, A., Seifi, E., Javadi, D., Ramezanpour, S. S., & Molnar, T. J. (2013). Nut and kernel characteristics of twelve hazelnut cultivars grown in Iran. Scientia Horticulturae, 150, 410–413. doi:10.1016/j.scienta.2012.11.028.

    Article  CAS  Google Scholar 

  • Huang, K.-Y. (2012). Detection and classification of areca nuts with machine vision. Computers & Mathematics with Applications, Advanced Technologies in Computer, Consumer and Control, 64, 739–746. doi:10.1016/j.camwa.2011.11.041.

    Google Scholar 

  • Ito, H., Okuda, T., Fukuda, T., Hatano, T., & Yoshida, T. (2007). Two novel dicarboxylic acid derivatives and a new dimeric hydrolyzable tannin from walnuts. Journal of Agricultural and Food Chemistry, 55, 672–679. doi:10.1021/jf062872b.

    Article  CAS  Google Scholar 

  • Kačíková, D., Kačík, F., Čabalová, I., & Ďurkovič, J. (2013). Effects of thermal treatment on chemical, mechanical and colour traits in Norway spruce wood. Bioresource Technology, 144, 669–674. doi:10.1016/j.biortech.2013.06.110.

    Article  Google Scholar 

  • Kara, Ş., & Erçelebi, E. A. (2013). Thermal degradation kinetics of anthocyanins and visual colour of Urmu mulberry (Morus nigra L.). Journal of Food Engineering, 116, 541–547. doi:10.1016/j.jfoodeng.2012.12.030.

    Article  CAS  Google Scholar 

  • Kaushik, N., Kaur, B. P., Rao, P. S., & Mishra, H. N. (2014). Effect of high pressure processing on color, biochemical and microbiological characteristics of mango pulp (Mangifera indica cv. Amrapali). Innovative Food Science & Emerging Technologies, 22, 40–50. doi:10.1016/j.ifset.2013.12.011.

    Article  CAS  Google Scholar 

  • Khataee, A. R., & Kasiri, M. B. (2010). Artificial neural networks modeling of contaminated water treatment processes by homogeneous and heterogeneous nanocatalysis. Journal of Molecular Catalysis A: Chemical, 331, 86–100. doi:10.1016/j.molcata.2010.07.016.

    Article  CAS  Google Scholar 

  • Khataee, A. R., Dehghan, G., Zarei, M., Ebadi, E., & Pourhassan, M. (2011). Neural network modeling of biotreatment of triphenylmethane dye solution by a green macroalgae. Chemical Engineering Research and Design, 89, 172–178. doi:10.1016/j.cherd.2010.05.009.

    Article  CAS  Google Scholar 

  • Kornsteiner, M., Wagner, K.-H., & Elmadfa, I. (2006). Tocopherols and total phenolics in 10 different nut types. Food Chemistry, 98, 381–387. doi:10.1016/j.foodchem.2005.07.033.

    Article  CAS  Google Scholar 

  • Ledbetter, C. A., & Palmquist, D. E. (2006). Degradation of almond pellicle color coordinates at different storage temperatures. Postharvest Biology and Technology, 40, 295–300. doi:10.1016/j.postharvbio.2006.02.001.

    Article  Google Scholar 

  • Li, Tsao, R., Yang, R., Liu, C., Zhu, H., & Young, J. C. (2006). Polyphenolic profiles and antioxidant activities of heartnut (juglans ailanthifolia Var. Cordiformis) and persian walnut (juglans regia L.). Journal of Agricultural and Food Chemistry, 54, 8033–8040. doi:10.1021/jf0612171.

    Article  CAS  Google Scholar 

  • López-Calleja, I. M., de la Cruz, S., Pegels, N., González, I., Martín, R., & García, T. (2014). Sensitive and specific detection of almond (Prunus dulcis) in commercial food products by real-time PCR. LWT - Food Science and Technology, 56, 31–39. doi:10.1016/j.lwt.2013.10.039.

    Article  Google Scholar 

  • Ma, Y., Lu, X., Liu, X., & Ma, H. (2013). Effect of 60Coγ-irradiation doses on nutrients and sensory quality of fresh walnuts during storage. Postharvest Biology and Technology, 84, 36–42. doi:10.1016/j.postharvbio.2013.04.001.

    Article  CAS  Google Scholar 

  • Mahdavee Khazaei, K., Jafari, S. M., Ghorbani, M., & Hemmati Kakhki, A. (2014). Application of maltodextrin and gum Arabic in microencapsulation of saffron petal’s anthocyanins and evaluating their storage stability and color. Carbohydrate Polymers, 105, 57–62. doi:10.1016/j.carbpol.2014.01.042.

    Article  CAS  Google Scholar 

  • Mandalari, G., Rigby, N. M., Bisignano, C., Lo Curto, R. B., Mulholland, F., Su, M., Venkatachalam, M., Robotham, J. M., Willison, L. N., Lapsley, K., Roux, K. H., & Sathe, S. K. (2014). Effect of food matrix and processing on release of almond protein during simulated digestion. LWT - Food Science and Technology, 59, 439–447. doi:10.1016/j.lwt.2014.05.005.

    Article  CAS  Google Scholar 

  • McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 115–133. doi:10.1007/BF02478259.

    Article  Google Scholar 

  • Mencarelli, F., Forniti, R., DeSantis, D., & Bellincontro, A. (2008). Effects of inert atmosphere and temperature for dried hazelnuts storage. Ingredienti Alimentari, 39, 16–21.

    Google Scholar 

  • Mexis, S. F., & Kontominas, M. G. (2009). Effect of γ-irradiation on the physicochemical and sensory properties of hazelnuts (Corylus avellana L.). Radiation Physics and Chemistry, 78, 407–413. doi:10.1016/j.radphyschem.2009.03.008.

    Article  CAS  Google Scholar 

  • Mexis, S. F., & Kontominas, M. G. (2010). Effect of oxygen absorber, nitrogen flushing, packaging material oxygen transmission rate and storage conditions on quality retention of raw whole unpeeled almond kernels (Prunus dulcis). LWT - Food Science and Technology, 43, 1–11. doi:10.1016/j.lwt.2009.06.024.

    Article  CAS  Google Scholar 

  • Moscetti, R., Frangipane, M. T., Monarca, D., Cecchini, M., & Massantini, R. (2012). Maintaining the quality of unripe, fresh hazelnuts through storage under modified atmospheres. Postharvest Biology and Technology, 65, 33–38. doi:10.1016/j.postharvbio.2011.10.009.

    Article  CAS  Google Scholar 

  • Omid, M., Mahmoudi, A., & Omid, M. H. (2009). An intelligent system for sorting pistachio nut varieties. Expert Systems with Applications, 36, 11528–11535. doi:10.1016/j.eswa.2009.03.040.

    Article  Google Scholar 

  • Ozdemir, F., & Akinci, I. (2004). Physical and nutritional properties of four major commercial Turkish hazelnut varieties. Journal of Food Engineering, 63, 341–347. doi:10.1016/j.jfoodeng.2003.08.006.

    Article  Google Scholar 

  • Özdemir, M., & Devres, O. (2000). Kinetics of color changes of hazelnuts during roasting. Journal of Food Engineering, 44, 31–38. doi:10.1016/S0260-8774(99)00162-4.

    Article  Google Scholar 

  • Piscopo, A., Romeo, F. V., Petrovicova, B., & Poiana, M. (2010). Effect of the harvest time on kernel quality of several almond varieties (Prunus dulcis (Mill.) D.A. Webb). Scientia Horticulturae, 125, 41–46. doi:10.1016/j.scienta.2010.02.015.

    Article  CAS  Google Scholar 

  • Santos, S.C.R.V.L., Guiné, R.P.F., Barros, A.I.A., (2013). Influence of drying on the properties of pears of the rocha variety. Pyrus communis. International Journal of Food Engineering 9. doi:10.1515/ijfe-2012-0171

  • Sweazea, K. L., Johnston, C. S., Ricklefs, K. D., & Petersen, K. N. (2014). Almond supplementation in the absence of dietary advice significantly reduces C-reactive protein in subjects with type 2 diabetes. Journal of Functional Foods, 10, 252–259. doi:10.1016/j.jff.2014.06.024.

    Article  CAS  Google Scholar 

  • Teimouri, N., Omid, M., Mollazade, K., & Rajabipour, A. (2014). A novel artificial neural networks assisted segmentation algorithm for discriminating almond nut and shell from background and shadow. Computers and Electronics in Agriculture, 105, 34–43. doi:10.1016/j.compag.2014.04.008.

    Article  Google Scholar 

  • Toğrul, H., & Arslan, N. (2007). Moisture sorption isotherms and thermodynamic properties of walnut kernels. Journal of Stored Products Research, 43, 252–264. doi:10.1016/j.jspr.2006.06.006.

    Article  Google Scholar 

  • Tsantili, E., Konstantinidis, K., Christopoulos, M. V., & Roussos, P. A. (2011). Total phenolics and flavonoids and total antioxidant capacity in pistachio (Pistachia vera L.) nuts in relation to cultivars and storage conditions. Scientia Horticulturae, 129, 694–701. doi:10.1016/j.scienta.2011.05.020.

    Article  CAS  Google Scholar 

  • Turan, D., Altay, F., & Çapanoğlu Güven, E. (2015). The influence of thermal processing on emulsion properties of defatted hazelnut flour. Food Chemistry, 167, 100–106. doi:10.1016/j.foodchem.2014.06.070.

    Article  CAS  Google Scholar 

  • Xiao, L., Lee, J., Zhang, G., Ebeler, S. E., Wickramasinghe, N., Seiber, J., & Mitchell, A. E. (2014). HS-SPME GC/MS characterization of volatiles in raw and dry-roasted almonds (Prunus dulcis). Food Chemistry, 151, 31–39. doi:10.1016/j.foodchem.2013.11.052.

    Article  CAS  Google Scholar 

  • Yağci, S., & Göğüş, F. (2009). Development of extruded snack from food by-products: a response surface analysis. Journal of Food Process Engineering, 32, 565–586. doi:10.1111/j.1745-4530.2007.00232.x.

    Article  Google Scholar 

  • Yang, J., Pan, Z., Takeoka, G., Mackey, B., Bingol, G., Brandl, M. T., Garcin, K., McHugh, T. H., & Wang, H. (2013). Shelf-life of infrared dry-roasted almonds. Food Chemistry, 138, 671–678. doi:10.1016/j.foodchem.2012.09.142.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel P. F. Guiné.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guiné, R.P.F., Almeida, C.F.F., Correia, P.M.R. et al. Modelling the Influence of Origin, Packing and Storage on Water Activity, Colour and Texture of Almonds, Hazelnuts and Walnuts Using Artificial Neural Networks. Food Bioprocess Technol 8, 1113–1125 (2015). https://doi.org/10.1007/s11947-015-1474-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1474-3

Keywords

Navigation