Skip to main content
Log in

Formulation of Antimicrobial Edible Nanoemulsions with Pseudo-Ternary Phase Experimental Design

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The aim of the present work was to study the formulation of edible nanoemulsions containing lemongrass essential oil as an antimicrobial agent, Tween 80 as a non-ionic surfactant and sodium alginate as a stabilizing and texturizing agent, by means of a pseudo-ternary phase experimental design. Polynomial models were satisfactory fitted to experimental data. Nanoemulsions with an average droplet diameter smaller than 100 nm were obtained by mixing oil and Tween 80 at a volume fraction below 0.01 (v/v) and higher than 0.009 (v/v), respectively. However, sodium alginate played a synergistic role regarding the stabilization of oil droplets in the absence of surfactant. In this sense, the higher the sodium alginate concentration, the stronger the negative surface charge of lipid droplets, as well as the higher the viscosity of the mixture. On the other hand, the emulsions’ whiteness decreased after increasing the surfactant and decreasing the oil phase, due to weak light scattering. As expected, the antimicrobial activity of blends was greater at higher amounts of essential oil, reaching a maximum of 7.37 log reduction of Escherichia coli after 30 min of contact time. Nevertheless, solubilizing and stabilizing the oil droplets by adding Tween 80 and sodium alginate might enhance the bactericidal effect of essential oils due to an improved dispersion in the continuous phase. The current work presents relevant information to formulate nanoemulsions incorporating antimicrobial agents for food applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adorjan, B., & Buchbauer, G. (2010). Biological properties of essential oils: an updated review. Flavour and Fragrance Journal, 25(6), 407–426.

    Article  CAS  Google Scholar 

  • Brar, S. K., & Verma, M. (2011). Measurement of nanoparticles by light-scattering techniques. Trends in Analytical Chemistry, 30(1), 4–17.

    Article  CAS  Google Scholar 

  • Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods - A review. International Journal of Food Microbiology, 94(3), 223–253.

    Article  CAS  Google Scholar 

  • Cornell, J. A. (2002). Experiments with mixtures: designs, models, and the analysis of mixture data. New York: John Wiley & Sons.

    Book  Google Scholar 

  • De Gennes, P. G. (1990). Interactions between polymers and surfactants. Journal of Physical Chemistry, 94(22), 8407–8413.

    Article  Google Scholar 

  • Donsì, F., Annunziata, M., Sessa, M., & Ferrari, G. (2011). Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT - Food Science and Technology, 44(9), 1908–1914.

    Article  Google Scholar 

  • Ferreira, J. P., Alves, D., Neves, O., Silva, J., Gibbs, P. A., & Teixeira, P. C. (2010). Effects of the components of two antimicrobial emulsions on food-borne pathogens. Food Control, 21(3), 227–230.

    Article  CAS  Google Scholar 

  • Fisher, K., & Phillips, C. (2008). Potential antimicrobial uses of essential oils in food: is citrus the answer? Trends in Food Science and Technology, 19(3), 156–164.

    Article  CAS  Google Scholar 

  • Friedman, M., Henika, P. R., Levin, C. E., & Mandrell, R. E. (2004). Antibacterial activities of plant essential oils and their components against Escherichia coli O157:H7 and Salmonella enterica in apple juice. Journal of Agricultural and Food Chemistry, 52(19), 6042–6048.

    Article  CAS  Google Scholar 

  • Goddard, E. D. (2002). Polymer/surfactant interaction: interfacial aspects. Journal of Colloid and Interface Science, 256(1), 228–235.

    Article  CAS  Google Scholar 

  • Gómez-Díaz, D., & Navaza, J. M. (2003). Rheology of aqueous soluions of food additives: Effect of concentration, temperature and blending. Journal of Food Engineering, 56(4), 387–392.

    Article  Google Scholar 

  • Hammer, K. A., Carson, C. F., & Riley, T. V. (1999). Antimicrobial activity of essential oils and other plant extracts. Journal of Applied Microbiology, 86(6), 985–990.

    Article  CAS  Google Scholar 

  • Hessien, M., Singh, N., Kim, C., & Prouzet, E. (2011). Stability and tunability of O/W nanoemulsions prepared by phase inversion composition. Langmuir, 27(6), 2299–2307.

    Article  CAS  Google Scholar 

  • Heurtault, B., Saulnier, P., Pech, B., Proust, J., & Benoit, J. (2003). Physico-chemical stability of colloidal lipid particles. Biomaterials, 24(23), 4283–4300.

    Article  CAS  Google Scholar 

  • Holley, R. A., & Patel, D. (2005). Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiology, 22(4), 273–292.

    Article  CAS  Google Scholar 

  • Hsu, J., & Nacu, A. (2003). Behaviour of soybean oil-in-water emulsion stabilized by nonionic surfactant. Journal of Colloid and Interface Science, 259(2), 374–381.

    Article  CAS  Google Scholar 

  • King, K. (1994). Changes in the functional properties and molecular weight of sodium alginate following γ irradiation. Food Hydrocolloids, 8(2), 83–96.

    Article  CAS  Google Scholar 

  • Kralova, I., & Sjöblom, J. (2009). Surfactants used in food industry: A review. Journal of Dispersion Science and Technology, 30(9), 1363–1383.

    Article  CAS  Google Scholar 

  • Li, P., & Chiang, B. (2012). Process optimization and stability of d-limonene-in-water nanoemulsions prepared by ultrasonic emulsification using response surface methodology. Ultrasonics Sonochemistry, 19(1), 192–197.

    Article  CAS  Google Scholar 

  • Liang, R., Xu, S., Shoemaker, C. F., Li, Y., Zhong, F., & Huang, Q. (2012). Physical and antimicrobial properties of peppermint oil nanoemulsions. Journal of Agricultural and Food Chemistry, 60(30), 7548–7555.

    Article  CAS  Google Scholar 

  • Maher, P. G., Fenelon, M. A., Zhou, Y., Kamrul Haque, M., & Roos, Y. H. (2011). Optimization of β-casein stabilized nanoemulsions using experimental mixture design. Journal of Food Science, 76(8), C1108–C1117.

    Article  CAS  Google Scholar 

  • Mancini, M., Moresi, M., & Sappino, F. (1996). Rheological behaviour of aqueous dispersions of algal sodium alginates. Journal of Food Engineering, 28(3–4), 283–295.

    Article  Google Scholar 

  • Mason, T. G., Wilking, J. N., Meleson, K., Chang, C. B., & Graves, S. M. (2006). Nanoemulsions: formation, structure, and physical properties. Journal of Physics Condensed Matter, 18(41), R635–R666.

    Article  CAS  Google Scholar 

  • McClements, D. J. (2011). Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter, 7(6), 2297–2316.

    Article  CAS  Google Scholar 

  • McClements, D. J. (2005). Food emulsions. Principles, Practices and Techniques. Boca Raton, FL: CRC Press.

    Google Scholar 

  • McClements, D. J. (2002a). Colloidal basis of emulsion colour. Current Opinion in Colloid and Interface Science, 7(5–6), 451–455.

    Article  CAS  Google Scholar 

  • McClements, D. J. (2002b). Theoretical prediction of emulsion colour. Advances in Colloid and Interface Science, 97(1–3), 63–89.

    Article  CAS  Google Scholar 

  • McClements, D. J., & Rao, J. (2011). Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Critical Reviews in Food Science and Nutrition, 51(4), 285–330.

    Article  CAS  Google Scholar 

  • Neumann, M. G., Schmitt, C. C., & Iamazaki, E. T. (2003). A fluorescence study of the interactions between sodium alginate and surfactants. Carbohydrate Research, 338(10), 1109–1113.

    Article  CAS  Google Scholar 

  • Qian, C., & McClements, D. J. (2011). Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: factors affecting particle size. Food Hydrocolloids, 25(5), 1000–1008.

    Article  CAS  Google Scholar 

  • Rao, J., & McClements, D. J. (2012). Lemon oil solubilization in mixed surfactant solutions: rationalizing microemulsion & nanoemulsion formation. Food Hydrocolloids, 26(1), 268–276.

    Article  CAS  Google Scholar 

  • Raybaudi-Massilia, R. M., Mosqueda-Melgar, J., & Martín-Belloso, O. (2008a). Edible alginate-based coating as carrier of antimicrobials to improve shelf-life and safety of fresh-cut melon. International Journal of Food Microbiology, 121(3), 313–327.

    Article  CAS  Google Scholar 

  • Raybaudi-Massilia, R. M., Rojas-Graü, M. A., Mosqueda-Melgar, J., & Martín-Belloso, O. (2008b). Comparative study on essential oils incorporated into an alginate-based edible coating to assure the safety and quality of fresh-cut Fuji apples. Journal of Food Protection, 71(6), 1150–1161.

    CAS  Google Scholar 

  • Ren, S., Mu, H., Alchaer, F., Chtatou, A., & Müllertz, A. (2013). Optimization of self nanoemulsifying drug delivery system for poorly water-soluble drug using response surface methodology. Drug Development and Industrial Pharmacy, 39(5), 799–806.

    Article  CAS  Google Scholar 

  • Rinaudo, M. (2008). Main properties and current applications of some polysaccharides as biomaterials. Polymer International, 57(3), 397–430.

    Article  CAS  Google Scholar 

  • Rojas-Graü, M. A., Raybaudi-Massilia, R. M., Soliva-Fortuny, R. C., Avena-Bustillos, R. J., McHugh, T. H., & Martín-Belloso, O. (2007). Apple puree-alginate edible coating as carrier of antimicrobial agents to prolong shelf-life of fresh-cut apples. Postharvest Biology and Technology, 45(2), 254–264.

    Article  Google Scholar 

  • Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A., & Cháfer, M. (2011). Use of essential oils in bioactive edible coatings: a review. Food Engineering Reviews, 3(1), 1–16.

    Article  Google Scholar 

  • Tajkarimi, M. M., Ibrahim, S. A., & Cliver, D. O. (2010). Antimicrobial herb and spice compounds in food. Food Control, 21(9), 1199–1218.

    Article  CAS  Google Scholar 

  • Terjung, N., Löffler, M., Gibis, M., Hinrichs, J., & Weiss, J. (2012). Influence of droplet size on the efficacy of oil-in-water emulsions loaded with phenolic antimicrobials. Food and Function, 3(3), 290–301.

    Article  CAS  Google Scholar 

  • Tiwari, B. K., Valdramidis, V. P., O'Donnell, C. P., Muthukumarappan, K., Bourke, P., & Cullen, P. J. (2009). Application of natural antimicrobials for food preservation. Journal of Agricultural and Food Chemistry, 57(14), 5987–6000.

    Article  CAS  Google Scholar 

  • Tønnesen, H. H., & Karlsen, J. (2002). Alginate in drug delivery systems. Drug Development and Industrial Pharmacy, 28(6), 621–630.

    Article  Google Scholar 

  • Vargas, M., Cháfer, M., Albors, A., Chiralt, A., & González-Martínez, C. (2008). Physicochemical and sensory characteristics of yoghurt produced from mixtures of cows’ and goats’ milk. International Dairy Journal, 18(12), 1146–1152.

    Article  CAS  Google Scholar 

  • Ziani, K., Chang, Y., McLandsborough, L., & McClements, D. J. (2011). Influence of surfactant charge on antimicrobial efficacy of surfactant-stabilized thyme oil nanoemulsions. Journal of Agricultural and Food Chemistry, 59(11), 6247–6255.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Ministerio de Ciencia e Innovación (Spain) throughout the project AGL2009-11475. Laura Salvia-Trujillo thanks the Ministry of Science and Education (Spain) for the predoctoral grant. Prof. Olga Martín-Belloso thanks the Institució Catalana de Recerca i Estudis Avançats (ICREA) for the Academia 2008 Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Martín-Belloso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salvia-Trujillo, L., Rojas-Graü, M.A., Soliva-Fortuny, R. et al. Formulation of Antimicrobial Edible Nanoemulsions with Pseudo-Ternary Phase Experimental Design. Food Bioprocess Technol 7, 3022–3032 (2014). https://doi.org/10.1007/s11947-014-1314-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1314-x

Keywords

Navigation