Skip to main content
Log in

Phytochemical Polyphenol Extraction and Elemental Composition of Vitis labrusca L. Grape Juices Through Optimization of Pectinolytic Activity

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Grape juice is a natural source of polyphenols with potential health benefits. The aim of this study was to assess the optimized basis of the pectinolytic activity through a multivariate design for the bioactive enrichment of polyphenols in grape juices and to evaluate the effect of pectinases on the extraction of minerals by ICP-MS and FAAS. Grape juices were treated with pectinases Everzym® Color and Rapidase® Smart at different conditions of enzyme concentration (0.16–1.84 g L−1), temperature (14.8–83.6 ºC), and incubation time (9.6–110.5 min), and the effect on total phenolics, anthocyanin content, and antioxidant activity of juices were determined by employing a second-order central composite design in combination with response surface methodology. The different conditions showed significant variations in polyphenol levels of grape juices. For both of the enzymes, the increase of temperature and enzyme concentration led to a higher extraction of polyphenols, with a significant effect. Estimated effects depict a good correlation among dependent variables. For Rapidase, the optimized extraction of polyphenols was determined at an enzyme concentration of 1.57 g L−1 and at a temperature of 54.8 ºC. For Everzym, higher concentrations of polyphenols were obtained at the enzyme concentration of 1.30 g L−1 at 46.8 ºC. The extraction using the Rapidase enzyme significantly increased the levels of Na, K, Mg, and Fe in grape juices (p < 0.05). The pectinolytic activity increased the polyphenol and mineral concentrations in grape juices. In addition, the optimal conditions of the pectinolytic treatment comprise a feasible alternative to improve the bioactive potential of grape juices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdullah, A. G. L., Sulaiman, N. M., Aroua, M. K., & Noor, M. J. M. M. (2007). Response surface optimization of conditions for clarification of carambola fruit juice using a commercial enzyme. Journal of Food Engineering, 81, 65–71.

    Article  CAS  Google Scholar 

  • Alimardani-Theuil, P., Gainvors-Claisse, A., & Duchiron, F. (2011). Yeasts: an attractive source of pectinases—from gene expression to potential applications: a review. Process Biochemistry, 46, 1525–1537.

    Article  CAS  Google Scholar 

  • Almeida, L. C., Garcia-Segura, S., Bocchi, N., & Brillas, E. (2011). Solar photoelectro-Fenton degradation of paracetamol using a flow plant with a Pt/air-diffusion cell coupled with a compound parabolic collector: process optimization by response surface methodology. Applied Catalysis B: Environmental, 103, 21–30.

    Article  CAS  Google Scholar 

  • Arnous, A., & Meyer, A. S. (2010). Discriminated release of phenolic substances from red wine grape skins (Vitis vinifera L.) by multicomponent enzymes treatment. Biochemical Engineering Journal, 49, 68–77.

    Article  CAS  Google Scholar 

  • Aron, P. M., & Kennedy, J. A. (2008). Flavan-3-ols: nature, occurrence and biological activity. Molecular Nutrition & Food Research, 52, 79–104.

    Article  CAS  Google Scholar 

  • Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP Assay. Analytical Biochemistry, 239, 70–76.

    Article  CAS  Google Scholar 

  • Brownleader, M. D., Jackson, P., Mobasheri, A., Pantelides, A. T., Sumar, S., Trevan, M., & Dey, P. M. (1999). Molecular aspects of cell wall modifications during fruit ripening. Food Science & Nutrition, 32, 149–164.

    Google Scholar 

  • Chamorro, S., Viveros, A., Alvarez, I., Veja, E., & Brenes, A. (2012). Changes in polyphenol and polysaccharide content of grape seed extract and grape pomace after enzymatic treatment. Food Chemistry, 133, 308–314.

    Article  CAS  Google Scholar 

  • Daglia, M. (2011). Polyphenols as antimicrobial agents. Current Opinion in Biotechnology, 23, 1–8.

    Google Scholar 

  • Dani, C., Oliboni, L. S., Vanderlinde, R., Pra, D., Dias, J. F., Yoneama, M. L., Bonatto, D., Salvador, M., & Henriques, A. P. (2009). Antioxidant activity and phenolic and mineral content of rose grape juice. Journal of Medicinal Food, 12, 188–192.

    Article  CAS  Google Scholar 

  • Fan, P., & Lou, H. (2004). Effects of polyphenols from grape seeds on oxidative damage to cellular DNA. Molecular and Cellular Biochemistry, 67, 67–74.

    Article  Google Scholar 

  • Giusti, M. M., & Wrolstad, R. E. (2001). Characterization and measurement of anthocyanins by UV-visible spectroscopy. In Current protocols in food analytical chemistry. New York, USA: John Wiley and Sons Inc.

    Google Scholar 

  • Jackson, R. S. (2008). Wine science: principles and applications. San Diego, USA: Elsevier Inc.

    Google Scholar 

  • Khanal, R. C., Howard, L. R., & Prior, R. L. (2010). Effect of heating on the stability of grape and blueberry pomace procyanidins and total anthocyanins. Food Research International, 43, 1464–1469.

    Article  CAS  Google Scholar 

  • Krishnaswamy, K., Orsat, V., Gariépy, Y., & Thangavel, K. (2013). Optimization of microwave-assisted extraction of phenolic antioxidants from grape seeds (Vitis vinifera). Food and Bioprocess Technology, 6, 441–455.

    Article  CAS  Google Scholar 

  • Landbo, A. K., & Meyer, A. S. (2004). Effects of different enzymatic maceration treatments on enhancement of anthocyanins and other phenolics in black currant juice. Innovative Food Science and Emerging Technologies, 5, 503–513.

    Article  CAS  Google Scholar 

  • Landbo, A. K., Kaack, K., & Meyer, A. S. (2007). Statistically designed two step response surface optimization of enzymatic prepress treatment to increase juice yield and lower turbidity of elderberry juice. Innovative Food Science and Emerging Technologies, 8, 135–142.

    Article  CAS  Google Scholar 

  • Maier, T., Göppert, A., Kammerer, D. R., Schieber, A., & Carle, R. (2008). Optimisation of a process for enzyme assisted pigment extraction from grape (Vitis vinifera L.) pomace. European Food Research and Technology, 227, 267–275.

    Article  CAS  Google Scholar 

  • Martino, K. G., Paul, M. S., Pegg, R. B., & Kerr, W. L. (2013). Effect of time-temperature conditions and clarification on the total phenolics and antioxidant constituents of muscadine grape juice. LWT - Food Science and Technology, 53, 327–330.

    Article  CAS  Google Scholar 

  • Montgomery, D. C. (2001). Design and analysis of experiments. New York, USA: John Wiley and Sons.

    Google Scholar 

  • Office International de la Vigne et du Vin. (1990). Recueil des Méthodes Internationales d’Analyse des Vins et des Moûts. Paris, France: Office International de la Vigne et du Vin.

    Google Scholar 

  • Panceri, C. P., Gomes, T. M., De Gois, J. S., Borges, D. L. G., & Bordignon-Luiz, M. T. (2013). Effect of dehydration process on mineral content, phenolic compounds and antioxidant activity of Cabernet Sauvignon and Merlot grapes. Food Research International, 54, 1343–1350.

    Article  CAS  Google Scholar 

  • Re, R., Pellegrini, N., Proteggemnte, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying and improved ABTS radical cation decolorization assay. Free Radical Biology Medicine, 26, 1234–1237.

    Google Scholar 

  • Rizzon, L. A., & Meneguzzo, J. (2007). Grape juice. Brazilia, Brazil: Embrapa Technological Information.

    Google Scholar 

  • Romero-Cascales, I., Ros-Garcia, J. M., López-Roca, J. M., & Gómez-Plaza, E. (2012). The effect of a commercial pectolytic enzyme on grape skin cell wall degradation and colour evolution during the maceration process. Food Chemistry, 130, 626–631.

    Article  CAS  Google Scholar 

  • Sandri, I. G., Fontana, R. C., Barfknecht, D. M., & Silveira, M. M. (2011). Clarification of fruit juices by fungal pectinases. LWT - Food Science and Technology, 44, 2217–2222.

    Article  CAS  Google Scholar 

  • Sin, H. N., Yusof, S., Sheikh Abdul, H. N., & Abdul Rahman, R. (2006). Optimization of hot water extraction for sapodilla juice using response surface methodology. Journal of Food Engineering, 74, 352–358.

    Article  Google Scholar 

  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.

    CAS  Google Scholar 

  • Toaldo, I. M., Fogolari, O., Pimentel, G. C., Gois, J. S., Borges, D. L. G., Caliari, V., & Bordignon-Luiz, M. (2013). Effect of grape seeds on the polyphenol bioactive content and elemental composition by ICP-MS of grape juices from Vitis labrusca L. LWT - Food Science and Technology, 53, 1–8.

    Article  CAS  Google Scholar 

  • Tormen, L., Torres, D. P., Dittert, I. M., Araújo, R. G. O., Frescura, V. L. A., & Curtius, A. J. (2011). Rapid assessment of metal contamination in commercial fruit juices by inductively coupled mass spectrometry after a simple dilution. Journal of Food Composition and Analysis, 24, 95–102.

    Article  CAS  Google Scholar 

  • Uenojo, M., & Pastore, G. M. (2007). Pectinases: industrial applications and perspectives. Quim Nova, 30, 388–394.

    Article  CAS  Google Scholar 

  • Whitaker, J. (1996). Enzymes. In O. R. Fennema (Ed.), Food Chemistry (pp. 431–530). New York, USA: Marcel Dekker.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilde T. Bordignon-Luiz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toaldo, I.M., de Gois, J.S., Fogolari, O. et al. Phytochemical Polyphenol Extraction and Elemental Composition of Vitis labrusca L. Grape Juices Through Optimization of Pectinolytic Activity. Food Bioprocess Technol 7, 2581–2594 (2014). https://doi.org/10.1007/s11947-014-1288-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1288-8

Keywords

Navigation