Skip to main content
Log in

Freezing Characteristics and Storage Stability of Broccoli (Brassica oleracea L. var. botrytis L.) Under Osmodehydrofreezing and Ultrasound-Assisted Osmodehydrofreezing Treatments

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Freezing characteristics (freezing time, latent heat of fusion of ice, and freezable water content) and quality parameters (drip loss, color, firmness, and l-ascorbic acid content) of broccoli (osmodehydrofrozen and ultrasound-assisted osmodehydrofrozen) during frozen storage were investigated. Freezing time, latent heat of fusion of ice, and freezable water content of osmodehydrated samples decreased significantly compared to samples which were not under osmotic dehydration. The changes of drip loss, color, firmness, and l-ascorbic acid content of osmodehydrofrozen and ultrasound-assisted osmodehydrofrozen broccoli during frozen storage were inhibited markedly compared to samples which were not submitted to osmotic dehydration before freezing. Compared to osmotic dehydration, the ultrasound-assisted osmotic dehydration shortened the needed dehydration time and better preserved the firmness and l-ascorbic acid content after osmotic dehydration pretreatment. In addition, the ultrasound-assisted osmotic dehydration minimized the drip loss and loss of l-ascorbic acid content and better maintained the color and firmness when stored at −25 °C for 6 months. These findings indicate that it is promising to apply ultrasound-assisted osmodehydrofreezing in freezing and frozen storage of food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agnelli, M., Marani, C., & Mascheroni, R. (2005). Modelling of heat and mass transfer during (osmo) dehydrofreezing of fruits. Journal of Food Engineering, 69(4), 415–424.

    Article  Google Scholar 

  • Bellary, A. N., Sowbhagya, H., & Rastogi, N. K. (2011). Osmotic dehydration assisted impregnation of curcuminoids in coconut slices. Journal of Food Engineering, 105(3), 453–459.

    Article  CAS  Google Scholar 

  • Buggenhout, S. V., Messagie, I., Maes, V., Duvetter, T., Van Loey, A., & Hendrickx, M. (2006). Minimizing texture loss of frozen strawberries: effect of infusion with pectinmethylesterase and calcium combined with different freezing conditions and effect of subsequent storage/thawing conditions. European Food Research and Technology, 223(3), 395–404.

    Article  CAS  Google Scholar 

  • Cárcel, J., Benedito, J., Rosselló, C., & Mulet, A. (2007). Influence of ultrasound intensity on mass transfer in apple immersed in a sucrose solution. Journal of Food Engineering, 78(2), 472–479.

    Article  Google Scholar 

  • Conway, J., Castaigne, F., Picard, G., & Vovan, X. (1983). Mass transfer considerations in the osmotic dehydration of apples. Canadian Institute of Food Science and Technology Journal, 16(1), 25–29.

    Article  Google Scholar 

  • Campbell, L. H., & Brockbank, K. G. (2012). Culturing with trehalose produces viable endothelial cells after cryopreservation. Cryobiology, 64(3), 240–244.

    Article  CAS  Google Scholar 

  • Crowe, J. H., Crowe, L. M., & Chapman, D. (1984). Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science (New York, NY), 223, 701–703.

    Article  CAS  Google Scholar 

  • Crowe, J. H., Hoekstra, F. A., Nguyen, K. H., & Crowe, L. M. (1996). Is vitrification involved in depression of the phase transition temperature in dry phospholipids? Biochimica et Biophysica Acta (BBA)-Biomembranes, 1280(2), 187–196.

    Article  Google Scholar 

  • De la Fuente-Blanco, S., Riera-Franco de Sarabia, E., Acosta-Aparicio, V., Blanco-Blanco, A., & Gallego-Juárez, J. (2006). Food drying process by power ultrasound. Ultrasonics, 44, e523–e527.

    Article  Google Scholar 

  • Dermesonlouoglou, E. K., Giannakourou, M., & Taoukis, P. S. (2007). Stability of dehydrofrozen tomatoes pretreated with alternative osmotic solutes. Journal of Food Engineering, 78(1), 272–280.

    Article  CAS  Google Scholar 

  • Dermesonlouoglou, E. K., Pourgouri, S., & Taoukis, P. S. (2008). Kinetic study of the effect of the osmotic dehydration pre-treatment to the shelf life of frozen cucumber. Innovative Food Science & Emerging Technologies, 9(4), 542–549.

    Article  Google Scholar 

  • Fernández-León, M. F., Fernández-León, A., Lozano, M., Ayuso, M., & González-Gómez, D. (2012). Altered commercial controlled atmosphere storage conditions for ‘Parhenon’ broccoli plants (Brassica oleracea L. var. italica). Influence on the outer quality parameters and on the health-promoting compounds. LWT - Food Science and Technology, 50(2), 665–672.

    Article  Google Scholar 

  • Fernández, P. P., Otero, L., Guignon, B., & Sanz, P. D. (2006). High-pressure shift freezing versus high-pressure assisted freezing: effects on the microstructure of a food model. Food Hydrocolloids, 20(4), 510–522.

    Article  Google Scholar 

  • Fernandes, F. A., Gallão, M. I., & Rodrigues, S. (2009). Effect of osmosis and ultrasound on pineapple cell tissue structure during dehydration. Journal of Food Engineering, 90(2), 186–190.

    Article  Google Scholar 

  • Giannakourou, M., & Taoukis, P. (2003). Stability of dehydrofrozen green peas pretreated with nonconventional osmotic agents. Journal of Food Science, 68(6), 2002–2010.

    Article  CAS  Google Scholar 

  • Gonçalves, E. M., Abreu, M., Brandão, T. R., & Silva, C. L. (2011). Degradation kinetics of colour, vitamin C and drip loss in frozen broccoli (Brassica oleracea L. ssp. italica) during storage at isothermal and non-isothermal conditions. International Journal of Refrigeration, 34(8), 2136–2144.

    Article  Google Scholar 

  • Gonçalves, E. M., Cruz, R., Abreu, M., Brandão, T., & Silva, C. L. (2009). Biochemical and colour changes of watercress (Nasturtium officinale R. Br.) during freezing and frozen storage. Journal of Food Engineering, 93(1), 32–39.

    Article  Google Scholar 

  • Goula, A. M., & Lazarides, H. N. (2012). Modeling of mass and heat transfer during combined processes of osmotic dehydration and freezing (osmo-dehydro-freezing). Chemical Engineering Science, 82, 52–61.

    Article  CAS  Google Scholar 

  • Jain, N. K., & Roy, I. (2010). Trehalose and protein stability. Current Protocols in Protein Science, chapter 4, 4.9. 1–4.9. 12.

  • Keck, A. S., & Finley, J. W. (2004). Cruciferous vegetables: cancer protective mechanisms of glucosinolate hydrolysis products and selenium. Integrative Cancer Therapies, 3(1), 5–12.

    Article  CAS  Google Scholar 

  • Lee, C. W., Waugh, J. S., & Griffin, R. G. (1986). Solid-state NMR study of trehalose/1,2-dipalmitoyl-sn-phosphatidylcholine interactions. Biochemistry, 25(13), 3737–3742.

    Article  CAS  Google Scholar 

  • Lee, S. L., Debenedetti, P. G., & Errington, J. R. (2005). A computational study of hydration, solution structure, and dynamics in dilute carbohydrate solutions. Journal of Chemical Physics, 122(20), 204511–204520.

    Article  Google Scholar 

  • Li, B., & Sun, D. W. (2002). Novel methods for rapid freezing and thawing of foods—a review. Journal of Food Engineering, 54(3), 175–182.

    Article  Google Scholar 

  • Lowithun, N., & Charoenrein, S. (2009). Influence of osmodehydrofreezing with different sugars on the quality of frozen rambutan. International Journal of Food Science & Technology, 44(11), 2183–2188.

    Article  CAS  Google Scholar 

  • Martínez‐Monzó, J., Martínez‐Navarrete, N., Chiralt, A., & Fito, P. (1998). Mechanical and structural changes in apple (var. Granny Smith) due to vacuum impregnation with cryoprotectants. Journal of Food Science, 63(3), 499–503.

    Article  Google Scholar 

  • Martins, R., & Silva, C. (2002). Modelling colour and chlorophyll losses of frozen green beans (Phaseolus vulgaris, L.). International Journal of Refrigeration, 25(7), 966–974.

    Article  CAS  Google Scholar 

  • Monsalve‐Gonález, A., Barbosa‐Cánovas, G. V., & Cavalieri, R. P. (1993). Mass transfer and textural changes during processing of apples by combined methods. Journal of Food Science, 58(5), 1118–1124.

    Article  Google Scholar 

  • Moraga, G., Martínez-Navarrete, N., & Chiralt, A. (2006). Compositional changes of strawberry due to dehydration, cold storage and freezing–thawing processes. Journal of Food Processing and Preservation, 30(4), 458–474.

    Article  Google Scholar 

  • Nowacka, M., Wiktor, A., Śledź, M., Jurek, N., & Witrowa-Rajchert, D. (2012). Drying of ultrasound pretreated apple and its selected physical properties. Journal of Food Engineering, 113(3), 427–433.

    Article  Google Scholar 

  • Ohtake, S., & Wang, Y. J. (2011). Trehalose: current use and future applications. Journal of Pharmaceutical Sciences, 100(6), 2020–2053.

    Article  CAS  Google Scholar 

  • Oku, K., & Okazaki, M. (1998). Allowable amount and metabolism of trehalose in Japanese population. Collection From The First Trehalsoe Symposium, pp 16–30.

  • Ramallo, L. A., & Mascheroni, R. H. (2010). Dehydrofreezing of pineapple. Journal of Food Engineering, 99(3), 269–275.

    Article  Google Scholar 

  • Torreggiani, D., & Bertolo, G. (2001). Osmotic pre-treatments in fruit processing: chemical, physical and structural effects. Journal of Food Engineering, 49(2–3), 247–253.

    Article  Google Scholar 

  • Torreggiani, D., Forni, E., & Rizzolo, A. (1988). Osmotic dehydration of fruit. Journal of Food Processing and Preservation, 12(1), 27–44.

    Article  CAS  Google Scholar 

  • Tregunno, N., & Goff, H. (1996). Osmodehydrofreezing of apples: structural and textural effects. Food Research International, 29(5), 471–479.

    Article  Google Scholar 

  • Wang, L. L., Chen, Y. M., & Li, Z. G. (2013). The effects of freezing on soybean microstructure and qualities of soymilk. Journal of Food Engineering, 116(1), 1–6.

    Article  Google Scholar 

  • Wu, L., Orikasa, T., Tokuyasu, K., Shiina, T., & Tagawa, A. (2009). Applicability of vacuum-dehydrofreezing technique for the long-term preservation of fresh-cut eggplant: effects of process conditions on the quality attributes of the samples. Journal of Food Engineering, 91(4), 560–565.

    Article  Google Scholar 

  • Xin, Y., Zhang, M., & Adhikari, B. (2013). Effect of trehalose and ultrasound-assisted osmotic dehydration on the state of water and glass transition temperature of broccoli (Brassica oleracea L. var. botrytis L.). Journal of Food Engineering, 119(3), 640–647.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by the China National Natural Science Foundation (contract no. 21176104) and Priority Academic Program Development of Jiangsu Higher Education Institutions to carry out this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xin, Y., Zhang, M. & Adhikari, B. Freezing Characteristics and Storage Stability of Broccoli (Brassica oleracea L. var. botrytis L.) Under Osmodehydrofreezing and Ultrasound-Assisted Osmodehydrofreezing Treatments. Food Bioprocess Technol 7, 1736–1744 (2014). https://doi.org/10.1007/s11947-013-1231-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-013-1231-4

Keywords

Navigation