Skip to main content
Log in

Development of a Novel Functional Soup Rich in Bioactive Sulforaphane Using Broccoli (Brassica oleracea L. ssp. italica) Florets and Byproducts

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Broccoli florets are rich in health-promoting compounds such as glucoraphanin, the precursor of the bioactive compound sulforaphane. In addition, broccoli byproducts such as stalk also contain health-promoting compounds and represent attractive ingredients in the development of functional foods. The bioconversion of glucosinolates into bioactive isothiocyanates is affected by many factors including heat and therefore cooking of Brassica such as broccoli may result in significant loss of sulforaphane production. The aim of this study was to develop a suitable food system as a vehicle for the delivery of sulforaphane in the human diet in adequate quantities. To this end, the feasibility of dry-mix ready soup as a food matrix for the delivery of broccoli floret and byproducts was evaluated. In particular, this study investigated the bioconversion of glucosinolates into bioactive isothiocyanates during the cooking process of this novel food product by microwave heating. In addition to total isothiocyanate and sulforaphane content, other key physical and biochemical quality attributes of the broccoli floret- and byproduct-enriched soups were investigated. Total isothiocyanate and sulforaphane content in floret- and stalk-enriched soups was high in both cases and increased in the order stalk<floret. The overall acceptability of stalk containing soups was not significantly different compared with the control soups, whereas floret containing soups received significantly lower acceptability scores. These results suggest that ready soups prepared by microwave heating represent a feasible food product for the delivery of broccoli florets and byproducts which is compatible with the bioconversion of glucosinolates into bioactive isothiocyanates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alexander, S. (2011). Approved pesticides for use on vegetable crops. Kinsealy, Dublin: Teagasc.

    Google Scholar 

  • Alvarez-Jubete L., Valverde J., Smyth T. & Barry-Ryan C. (2011) Optimization of glucosinolate bioconversion into isothiocyanates using response surface methodology. Polish Journal of Food and Nutrition Science, 61 (1S Special Issue), 71.

  • Alvarez-Jubete L., Valverde J., Patras A., Mullen A. & Marcos B. (2013) Assessing the impact of high-pressure processing on selected physical and biochemical attributes of white cabbage (Brassica oleracea L. Var. Capitata alba). Food and Bioprocess Technology, 1–11.

  • Bones, A. M., & Rossiter, J. T. (2006). The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry, 67(11), 1053–1067.

    Article  CAS  Google Scholar 

  • Brown, A. F., Yousef, G. G., Jeffrey, E. H., Klein, B. P., Wallig, M. A., Kushad, M. M., et al. (2002). Glucosinolate profiles in broccoli: Variation in levels and implications in breeding for cancer chemoprotection. Journal of the American Society for Horticultural Science, 127(5), 807–813.

    CAS  Google Scholar 

  • Clarke, D. B. (2010). Glucosinolates, structures and analysis in food. Analytical Methods, 2(4), 310–325.

    Article  CAS  Google Scholar 

  • Dominguez-Perles, R., Martinez-Ballesta, M. C., Carvajal, M., Garcia-Viguera, C., & Moreno, D. A. (2010). Broccoli-derived by-products—A promising source of bioactive ingredients. Journal of Food Science, 75(4), C383–C392.

    Article  CAS  Google Scholar 

  • Dominguez-Perles, R., Moreno, D. A., Carvajal, M., & Garcia-Viguera, C. (2011). Composition and antioxidant capacity of a novel beverage produced with green tea and minimally-processed byproducts of broccoli. Innovative Food Science and Emerging Technologies, 12(3), 361–368.

    Article  CAS  Google Scholar 

  • Fahey, J. W., Zalcmann, A. T., & Talalay, P. (2001). The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry, 56(1), 5–51.

    Article  CAS  Google Scholar 

  • Faller, A. L. K., & Fialho, E. (2009). The antioxidant capacity and polyphenol content of organic and conventional retail vegetables after domestic cooking. Food Research International, 42(1), 210–215.

    Article  CAS  Google Scholar 

  • Galgano, F., Favati, F., Caruso, M., Pietrafesa, A., & Natella, S. (2007). The influence of processing and preservation on the retention of health-promoting compounds in broccoli. Journal of Food Science, 72(2), S130–S135.

    Article  CAS  Google Scholar 

  • Holst, B., & Williamson, G. (2004). A critical review of the bioavailability of glucosinolates and related compounds. Natural Product Reports, 21(3), 425–447.

    Article  CAS  Google Scholar 

  • Holst, B., Fenwick, G. R., & Benjamin, C. (2003). Glucosinolates. Encyclopedia of food sciences and nutrition (pp. 2922–2930). Oxford: Academic Press.

    Book  Google Scholar 

  • Howard, L. A., Jeffery, E. H., Wallig, M. A., & Klein, B. P. (1997). Retention of phytochemicals in fresh and processed broccoli. Journal of Food Science, 62(6), 1098–1104.

    Article  CAS  Google Scholar 

  • Huang, D., Ou, B., Hampsch-Woodill, M., Flanagan, J. A., & Prior, R. L. (2002). High-throughput assay of oxygen radical absorbance capacity (orac) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. Journal of Agricultural and Food Chemistry, 50(16), 4437–4444.

    Article  CAS  Google Scholar 

  • Jeffery, E. H., & Araya, M. (2009). Physiological effects of broccoli consumption. Phytochemistry Reviews, 8(1), 283–298.

    Article  CAS  Google Scholar 

  • Jones, R. B., Faragher, J. D., & Winkler, S. (2006). A review of the influence of postharvest treatments on quality and glucosinolate content in broccoli (Brassica oleracea var. italica) heads. Postharvest Biology and Technology, 41(1), 1–8.

    Article  CAS  Google Scholar 

  • Jones, R. B., Frisina, C. L., Winkler, S., Imsic, M., & Tomkins, R. B. (2010). Cooking method significantly effects glucosinolate content and sulforaphane production in broccoli florets. Food Chemistry, 123(2), 237–242.

    Article  CAS  Google Scholar 

  • Jung, S., Ghoul, M., & De Lamballerie-Anton, M. (2003). Influence of high pressure on the color and microbial quality of beef meat. LWT- Food Science and Technology, 36(6), 625–631.

    Article  CAS  Google Scholar 

  • Kurilich, A. C., Jeffery, E. H., Juvik, J. A., Wallig, M. A., & Klein, B. P. (2002). Antioxidant capacity of different broccoli (Brassica oleracea) genotypes using the oxygen radical absorbance capacity (ORAC) assay. Journal of Agricultural and Food Chemistry, 50(18), 5053–5057.

    Article  CAS  Google Scholar 

  • Kushad, M. M., Brown, A. F., Kurilich, A. C., Juvik, J. A., Klein, B. P., Wallig, M. A., et al. (1999). Variation of glucosinolates in vegetable crops of Brassica oleracea. Journal of Agricultural and Food Chemistry, 47(4), 1541–1548.

    Article  CAS  Google Scholar 

  • Lalor, L., & Coulter, S. (2008). Major and minor micronutrient advice for productive agricultural crops. Oakpark, Carlow: Teagasc.

    Google Scholar 

  • Martínez-Hernández G., Artés-Hernández F., Colares-Souza F., Gómez P., García-Gómez P. & Artés F. (2012) Innovative cooking techniques for improving the overall quality of a kailan-hybrid broccoli. Food and Bioprocess Technology, 1–15.

  • Matusheski, N. V., & Jeffery, E. H. (2001). Comparison of the bioactivity of two glucoraphanin hydrolysis products found in broccoli, sulforaphane and sulforaphane nitrile. Journal of Agricultural and Food Chemistry, 49(12), 5743–5749.

    Article  CAS  Google Scholar 

  • Matusheski, N. V., Wallig, M. A., Juvik, J. A., Klein, B. P., Kushad, M. M., & Jeffery, E. H. (2001). Preparative hplc method for the purification of sulforaphane and sulforaphane nitrile from Brassica oleracea. Journal of Agricultural and Food Chemistry, 49, 1867–1872.

    Article  CAS  Google Scholar 

  • Matusheski, N. V., Juvik, J. A., & Jeffery, E. H. (2004). Heating decreases epithiospecifier protein activity and increases sulforaphane formation in broccoli. Phytochemistry, 65(9), 1273–1281.

    Article  CAS  Google Scholar 

  • Matusheski, N. V., Swarup, R., Juvik, J. A., Mithen, R., Bennett, M., & Jeffery, E. H. (2006). Epithiospecifier protein from broccoli (Brassica oleracea L. ssp italica) inhibits formation of the anticancer agent sulforaphane. Journal of Agricultural and Food Chemistry, 54(6), 2069–2076.

    Article  CAS  Google Scholar 

  • McGuire, R. G. (1992). Reporting of objective color measurements. HortScience, 27(12), 1254–1255.

    Google Scholar 

  • Miglio, C., Chiavaro, E., Visconti, A., Fogliano, V., & Pellegrini, N. (2008). Effects of different cooking methods on nutritional and physicochemical characteristics of selected vegetables. Journal of Agricultural and Food Chemistry, 56(1), 139–147.

    Article  CAS  Google Scholar 

  • Mohn, T., Cutting, B., Ernst, B., & Hamburger, M. (2007). Extraction and analysis of intact glucosinolates—A validated pressurized liquid extraction/liquid chromatography-mass spectrometry protocol for isatis tinctoria, and qualitative analysis of other cruciferous plants. Journal of Chromatography. A, 1166(1–2), 142–151.

    Article  CAS  Google Scholar 

  • Moreno, D. A., Carvajal, M., Lopez-Berenguer, C., & Garcia-Viguera, C. (2006). Chemical and biological characterisation of nutraceutical compounds of broccoli. Journal of Pharmaceutical and Biomedical Analysis, 41(5), 1508–1522.

    Article  CAS  Google Scholar 

  • Ou, B., Hampsch-Woodill, M., & Prior, R. L. (2001). Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. Journal of Agricultural and Food Chemistry, 49(10), 4619–4626.

    Article  CAS  Google Scholar 

  • Rosa, E. A. S., & Rodrigues, P. M. F. (1999). Towards a more sustainable agriculture system: The effect of glucosinolates on the control of soil-borne diseases. The Journal of Horticultural Science and Biotechnology, 74, 667–674.

    CAS  Google Scholar 

  • Sun-Waterhouse D & Wadhwa S (2012) Industry-relevant approaches for minimising the bitterness of bioactive compounds in functional foods: A review. Food and Bioprocess Technology, 1–21.

  • SymphonyIRIGroup (2010) 15 years of new product pacesetters: Excellence in innovation drives cpg to the next level. SymphonyIRIGroup, Chicago, USA. Available at: www.symphonyiri.com/portals/0/articlePdfs/T_T-January-2010-Special-NPP-15-Yrs.pdf. Accessed 14 November 2012.

  • Vallejo, F., Tomas-Barberan, F. A., & Garcia-Viguera, C. (2002). Glucosinolates and vitamin C content in edible parts of broccoli florets after domestic cooking. European Food Research and Technology, 215(4), 310–316.

    Article  CAS  Google Scholar 

  • Verkerk, R., & Dekker, M. (2004). Glucosinolates and myrosinase activity in red cabbage (Brassica oleracea l. var. Capitata f. Rubra dc.) after various microwave treatments. Journal of Agricultural and Food Chemistry, 52(24), 7318–7323.

    Article  CAS  Google Scholar 

  • Verkerk, R., Schreiner, M., Krumbein, A., Ciska, E., Holst, B., Rowland, I., et al. (2009). Glucosinolates in brassica vegetables: The influence of the food supply chain on intake, bioavailability and human health. Molecular Nutrition & Food Research, 53(S2), S219–S219.

    Article  Google Scholar 

  • Wachtel-Galor, S., Wong, K. W., & Benzie, I. F. F. (2008). The effect of cooking on brassica vegetables. Food Chemistry, 110(3), 706–710.

    Article  CAS  Google Scholar 

  • Zhang, D. L., & Hamauzu, Y. (2004). Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food Chemistry, 88(4), 503–509.

    Article  CAS  Google Scholar 

  • Zhang, Y., & Tang, L. (2007). Discovery and development of sulforaphane as a cancer chemopreventive phytochemical. Acta Pharmacologica Sinica, 28(9), 1343–1354.

    Article  CAS  Google Scholar 

  • Zhang, Y. S., Cho, C. G., Posner, G. H., & Talalay, P. (1992). Spectroscopic quantitation of organic isothiocyanates by cyclocondensation with vicinal dithiols. Analytical Biochemistry, 205(1), 100–107.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded under the Irish National Development Plan under the Food Institutional Research Measure, administered by the Department of Agriculture, Fisheries and Food.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Barry-Ryan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez-Jubete, L., Valverde, J., Kehoe, K. et al. Development of a Novel Functional Soup Rich in Bioactive Sulforaphane Using Broccoli (Brassica oleracea L. ssp. italica) Florets and Byproducts. Food Bioprocess Technol 7, 1310–1321 (2014). https://doi.org/10.1007/s11947-013-1113-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-013-1113-9

Keywords

Navigation