Skip to main content
Log in

Pea Starch Annealing: New Insights

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Three different pea starches were annealed in excess water at 45 °C for 24 and 72 h, and the changes in their structure and functionality were determined. Annealing resulted in slightly irreversible swelling with leaching of some amylose molecules, which was accompanied by small changes in granular morphology and relative crystallinity, but significant changes in functionality such as decreased swelling power and starch solubility and increased thermal transition temperatures, enthalpy changes, pasting viscosities and in vitro digestibility. Annealing led to an increase in proportion of B-type polymorphs within C-type pea starches, which was explained as being due to a polymorphic transition from A to B. Annealing mainly acts on the amorphous regions of starch granules, leading to amylose leaching. The removal of amylose molecules can reduce the long-range forces within the granule and thereby weakening the overall granule structure and leading to significant changes to functional properties. This study showed that annealing is a mild but important physical modification of starch, which can be used as a pretreatment technique to tailor the starch functionality for specific industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Chung, H. J., Hoover, R., & Liu, Q. (2009). The impact of single and dual hydrothermal modifications on the molecular structure and physicochemical properties of normal corn starch. International Journal of Biological Macromolecules, 44(2), 203–210.

    Article  CAS  Google Scholar 

  • Chung, H. J., Liu, Q., & Hoover, R. (2009). Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches. Carbohydrate Polymers, 75(3), 436–447.

    Article  CAS  Google Scholar 

  • Davydova, N. I., Leont’ev, S. P., Genin Ya, V., Yu, S. A., & Ya, B. T. (1995). Some physico-chemical properties of smooth pea starches. Carbohydrate Polymers, 27(2), 109–115.

    Article  CAS  Google Scholar 

  • Dias, A. R. G., Zavareze, E. R., Spier, F., Castro, L. A. S., & Gutkoski, L. C. (2010). Effect of annealing on the physicochemical properties and enzymatic susceptibility of rice starches with different amylose content. Food Chemistry, 123(3), 711–719.

    Article  CAS  Google Scholar 

  • Englyst, H. N., Kingman, S. M., & Cummings, J. H. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 46(suppl 2), S33–S50.

    Google Scholar 

  • Hoover, R., Hughes, T., Chung, H. J., & Liu, Q. (2010). Composition, molecular structure, properties, and modification of pulse starches: a review. Food Research International, 43(2), 399–413.

    Article  CAS  Google Scholar 

  • Imberty, A., Buléon, A., & Perez, S. (1991). Recent advances in knowledge of starch structure. Starch-Starke, 43(10), 375–384.

    Article  CAS  Google Scholar 

  • Jacobes, H., Eerlingen, R. C., Clauwaert, W., & Delcour, J. A. (1995). Influence of annealing on the pasting properties of starches from varying botanical sources. Cereal Chemistry, 72(5), 480–487.

    Google Scholar 

  • Jacobs, H., & Delcour, A. (1998). Hydrothermal modifications of granular starch, with retention of granular structure: a review. Journal of Agricultural and Food Chemistry, 46(8), 2895–2905.

    Article  CAS  Google Scholar 

  • Jane, J.-L., Wong, K. S., & McPherson, A. E. (1997). Branch-structure difference in starches of A-and B-type X-ray patterns revealed by their Naegeli dextrins. Carbohydrate Research, 300(3), 219–227.

    Article  CAS  Google Scholar 

  • Jayakody, L., & Hoover, R. (2008). Effect of annealing on the molecular structure and physicochemical properties of starches from different botanical origin—a review. Carbohydrate Polymers, 74(3), 691–703.

    Article  CAS  Google Scholar 

  • Kiseleva, V. I., Krivandin, A. V., Fornal, J., Blaszczak, W., Jelinski, T., & Yuryev, V. P. (2005). Annealing of normal and mutant wheat starches. LM, SEM, DSC and SAXS studies. Carbohydrate Research, 340(1), 75–83.

    Article  CAS  Google Scholar 

  • Kohyama, K., & Sadaki, T. (2006). Differential scanning calorimetry and a model calculation of starches annealed at 20 and 50 °C. Carbohydrate Polymers, 63(1), 82–88.

    Article  CAS  Google Scholar 

  • Lan, H., Hoover, R., Jayakody, L., Liu, Q., Donner, E., Baga, M., Asare, E. K., Hucl, P., & Chibbar, R. N. (2008). Impact of annealing on the molecular structure and physicochemical properties of normal, waxy and high amylose bread wheat starches. Food Chemistry, 111(3), 663–675.

    Article  CAS  Google Scholar 

  • Liu, H., Yu, L., Simon, G., Dean, K., & Chen, L. (2009). Effects of annealing on gelatinization and microstructures of corn starches with different amylose/amylopectin ratios. Carbohydrate Polymers, 77(3), 662–669.

    Article  CAS  Google Scholar 

  • O’Brien, S., & Wang, Y.-J. (2008). Susceptibility of annealed starches to hydrolysis by alpha-amylase and glucoamylase. Carbohydrate Polymers, 72(4), 597–607.

    Article  Google Scholar 

  • Pérez, S., & Bertoft, E. (2010). The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starch-Starke, 62(8), 389–420.

    Article  Google Scholar 

  • Rocha, T. S., Cunha, V. A. G., Jane, J.-L., & Franco, C. M. L. (2011). Structural characterization of Peruvian carrot (Arracacia xanthorrhiza) starch and the effect of annealing on its semicrystalline structure. Journal of Agricultural and Food Chemistry, 59(8), 4208–4216.

    Article  CAS  Google Scholar 

  • Rocha, T. S., Gelizardo, S. G., Jane, J.-L., & Franco, C. M. L. (2012). Effect of annealing on the semicrystalline structure of normal and waxy maize starches. Food Hydrocolloids, 29(1), 93–99.

    Article  CAS  Google Scholar 

  • Tester, R. F., & Debon, S. J. J. (2000). Annealing of starch—a review. International Journal of Biological Macromolecules, 27(1), 1–12.

    Article  CAS  Google Scholar 

  • Waduge, R. N., Hoover, R., Vasanthan, T., Gao, J., & Li, J. (2006). Effect of annealing on the structure and physicochemical properties of barley starches of varying amylose content. Food Research International, 39(1), 59–77.

    Article  CAS  Google Scholar 

  • Wang, S. J., & Copeland, L. (2012a). New insights into loss of swelling power and pasting profiles of acid hydrolysed starch granules. Starch-Starke, 64(7), 538–544.

    CAS  Google Scholar 

  • Wang, S. J., & Copeland, L. (2012b). Nature of thermal transitions of native and acid-hydrolysed pea starch: does gelatinization really happen? Carbohydrate Polymers, 87(2), 1507–1514.

    Article  CAS  Google Scholar 

  • Wang, S. J., & Copeland, L. (2012c). Phase transitions of pea starch over a wide range of water content. Journal of Agricultural and Food Chemistry, 60(25), 6439–6446.

    Article  CAS  Google Scholar 

  • Wang, S. J., Yu, J. L., & Yu, J. G. (2008). The semi-crystalline growth rings of C-type pea starch granule revealed by SEM and HR-TEM during acid hydrolysis. Carbohydrate Polymers, 74(3), 731–739.

    Article  CAS  Google Scholar 

  • Wang, S. J., Yu, J. L., Zhu, Q. H., Yu, J. G., & Jin, F. M. (2009). Granular structure and allomorph position in C-type Chinese yam starch granule revealed by SEM, 13C CP/MAS NMR and XRD. Food Hydrocolloids, 23(2), 426–433.

    Article  Google Scholar 

  • Wang, S. J., Sharp, P., & Copeland, L. (2011). Structural and functional properties of starches from field peas. Food Chemistry, 126(4), 1546–1552.

    Article  CAS  Google Scholar 

  • Wang, S. J., Blazek, J., Gilbert, E. P., & Copeland, L. (2012). New insights on the mechanism of acid degradation of pea starch. Carbohydrate Polymers, 87(3), 1941–1949.

    Article  CAS  Google Scholar 

  • Williams, P. C., Kuzina, F. D., & Hlynka, I. (1970). A rapid calorimetric procedure for estimating the amylose content of starches and flours. Cereal Chemistry, 47, 411–420.

    CAS  Google Scholar 

  • Zavareze, E. R., & Dias, A. R. G. (2011). Impact of heat-moisture treatment and annealing in starches: a review. Carbohydrate Polymers, 83(2), 317–328.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

SW greatly appreciates the support of The University of Sydney Postdoctoral Research Fellowship. SW also acknowledges the partially financial support by the Research Fund for the Doctoral Program of Higher Education of China for Youth (grant no. 200800561049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Jin, F. & Yu, J. Pea Starch Annealing: New Insights. Food Bioprocess Technol 6, 3564–3575 (2013). https://doi.org/10.1007/s11947-012-1010-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-012-1010-7

Keywords

Navigation