Skip to main content
Log in

Process Optimization by Response Surface Methodology and Characteristics Investigation of Corn Extrudate Fortified with Yam (Dioscorea alata L.)

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Response surface methodology was used to investigate the optimum operation conditions of a single screw extruder and to analyze the effects of extrusion processing variables, including yam flour contents (10–30 %), moisture content (10–18 %), and screw speed (250–350 rpm) on characteristics of the corn–yam extrudates. Quadratic polynomial equations were also obtained by multiple regression analysis. The predicted models were adequate based on the lack-of-fit test and coefficient of determination obtained. By superimposing individual contour plots of the different responses, regions meeting the optimum conditions were also derived. The moisture content had critical effect on all responses variables. All the characteristic of the corn–yam extrudates evaluated were significantly affected by three process variables. Feed moisture content was the most significant variable with on most of characteristics. Increasing moisture content caused increase in bulk density, water absorption index and hardness, but decrease in radial expansion ratio. However, graphical optimization studies resulted in 21–23 %, 12–13 %, and 305–320 rpm of yam flour level, moisture content, and screw speed, respectively. The results suggested that corn extrudates fortified with yam produced by using the single-screw extruder are suitable for snack food development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agbor-Egbe, T., & Treche, S. (1995). Evaluation of chemical composition of Cameroonian yam germplasm. Journal of Food Composition and Analysis, 8, 274–283.

    Article  Google Scholar 

  • Ainsworth, P., İbanoğlu, Ş., Plunkett, A., İbanoğlu, E., & Stojceska, V. (2007). Effect of brewers spent grain addition and screw speed on the selected physical and nutritional properties of an extruded snack. Journal of Food Engineering, 81, 702–709.

    Article  CAS  Google Scholar 

  • Alonso, R., Aguirre, A., & Marzo, F. (2000). Effects of extrusion and traditional processing methods on antinutrients and in vitro digestibility of protein and starch in faba and kidney beans. Food Chemistry, 68, 159–165.

    Article  CAS  Google Scholar 

  • Altan, A., McCarthy, K. L., & Maskan, M. (2008a). Twin-screw extrusion of barley-grape pomace blends: Extrudate characteristics and determination of optimum processing conditions. Journal of Food Engineering, 89, 24–32.

    Article  Google Scholar 

  • Altan, A., McCarthy, K. L., & Maskan, M. (2008b). Evaluation of snack foods from barley–tomato pomace blends by extrusion processing. Journal of Food Engineering, 84, 231–242.

    Article  Google Scholar 

  • Alvarez-Martinez, L., Kondury, K. P., & Harper, J. M. (1988). A general model for expansion of extruded products. Journal of Food Science, 53, 609–615.

    Article  Google Scholar 

  • Alves, R. M. L., Grossmann, M. V. E., & Silva, R. S. S. F. (1999). Gelling properties of extruded yam (Dioscorea alata) starch. Food Chemistry, 67, 123–127.

    Article  CAS  Google Scholar 

  • Anderson, R. A., Conway, H. F., Pfeifer, V. F., & Griffn, E. L. (1969). Gelatinization of corn grits by roll and extrusion cooking. Cereal Science Today, 14, 4–12.

    Google Scholar 

  • Anton, A. A., Fulcher, R. G., & Arntfield, S. D. (2009). Physical and nutritional impact of fortification of corn starch-based extruded snacks with common bean (Phaseolus vulgaris L.) flour: Effects of bean addition and extrusion cooking. Food Chemistry, 113, 989–996.

    Article  CAS  Google Scholar 

  • Arhaliass, A., Bouvier, J. M., & Legrand, J. (2003). Melt growth and shrinkage at the exit of the die in the extrusion-cooking process. Journal of Food Engineering, 60, 185–192.

    Article  Google Scholar 

  • Asiedu, R., & Sartie, A. (2010). Crops that feed the world 1. Yam: Yams for income and food security. Food Security, 2, 305–315.

    Article  Google Scholar 

  • Badrie, N., & Mellowes, W. A. (1991). Effect of extrusion variables on cassava extrudates. Journal of Food Science, 56, 1334–1337.

    Article  Google Scholar 

  • Baik, B. K., Powers, J., & Nguyen, L. T. (2004). Extrusion of regular and waxy barley flours for production of expanded cereals. Cereal Chemistry, 81, 94–99.

    Article  CAS  Google Scholar 

  • Baublis, A. J., Clydesdale, F. M., & Decker, E. A. (2000). Antioxidants in wheat-based breakfast cereals. Cereal Foods World, 45, 71–74.

    Google Scholar 

  • Bhandari, M. R., Kasai, T., & Kawabata, J. (2003). Nutritional evaluation of wild yam (Dioscorea spp.) tubers of Nepal. Food Chemistry, 82, 619–623.

    Article  CAS  Google Scholar 

  • Bhattacharya, M., & Milford, A. H. (1987). Textural properties of extrusion cooked corn starch. Lebensm-Wiss u.-Technology, 20, 195–201.

    Google Scholar 

  • Bhattacharya, S., & Prakash, M. (1994). Extrusion of blends of rice and chick pea flours: A response surface analysis. Journal of Food Engineering, 21, 315–330.

    Article  Google Scholar 

  • Bhattacharya, S., Sudha, M. L., & Rahim, A. (1999). Pasting characteristics of an extruded blend of potato and wheat flours. Journal of Engineering, 40, 107–111.

    Google Scholar 

  • Borba, M. A., Sarmento, S. B. S., & Leonel, M. (2005). Effect of extrusion parameters on sweet potato extrudates. Ciência e Tecnologia de Alimentos, 25(4), 835–843.

    Article  Google Scholar 

  • Box, G. E. P., & Behnken, D. W. (1960). Some new three level designs for the study of quantitative variables. Technometrics, 2, 455–462.

    Article  Google Scholar 

  • Camire, M. E., & King, C. C. (1991). Protein and fiber supplementation effects on extruded cornmeal snack quality. Journal of Food Science, 56, 760–763.

    Article  CAS  Google Scholar 

  • Camire, M. E., Dougherty, M. P., & Briggs, J. L. (2007). Functionality of fruit powders in extruded corn breakfast cereals. Food Chemistry, 101, 765–770.

    Article  CAS  Google Scholar 

  • Case, S. E., Hanna, M. A., & Schwartz, S. J. (1992). Effect of starch gelatinization on physical properties of extruded wheat and corn based products. Cereal Chemistry, 69, 401–404.

    CAS  Google Scholar 

  • Céspedes, M. A. L., Martínez Bustos, F., & Kil chang, Y. (2009). The effect of extruded orange pulp on enzymatic hydrolysis of starch and glucose retardation index. Food and Bioprocess Technology, doi:10.1007/s11947-008-0166-7.

  • Chakraborty, S. K., Singh, D. S., Kumbhar B. K., & Chakraborty. S. (2010). Millet–legume blended extrudates characteristics and process optimization using RSM. Food and Bioproducts processing, doi:10.1016/j.fbp.2010.10.003.

  • Chang, Y.-K., Silva, M. R., Gutkoski, L. C., Sebio, L., & Da Silva, M. A. A. P. (1998). Development of extruded snacks using jatobá (Hymenaea stigonocarpa Mart) flour and cassava starch blends. Journal of the Science of Food and Agriculture, 78, 59–66.

    Article  CAS  Google Scholar 

  • Chinnaswamy, R., & Hanna, M. A. (1988). Optimum extrusion cooking conditions for maximum expansion of corn starch. Journal of Food Science, 53, 834–840.

    Article  Google Scholar 

  • Chiu, H.-W., Peng, J.-C., Tsai, S.-J., & Lui, W.-B. (2011). Effect of extrusion processing on antioxidant activities of corn extrudates fortified with various Chinese yams (Dioscorea sp.). Food and Bioprocess Technology, doi:10.1007/s11947-011-0675-7.

  • Desrumaux, A. (1996). Comportement technologique des semoules de maïïs en cuisson-extrusion. Thèse Génie des Procédés Industriels. Université de Technologie de Compiègne.

  • Ding, Q. B., Ainsworth, P., Tucker, G., & Marson, H. (2005). The effect of extrusion conditions on the physicochemical properties and sensory characteristics of rice-expanded snacks. Journal of Food Engineering, 66, 283–289.

    Article  Google Scholar 

  • Diosady, L. L., Paton, D., Rosen, N., Rubin, L. J., & Athanassoulias, C. (1985). Degradation of wheat starch in a single-screw extruder: Mechano-kinetic breakdown of cooked starch. Journal of Food Science, 50, 1697–1706.

    Article  CAS  Google Scholar 

  • Faubion, J. M., & Hoseney, R. C. (1982). High-temperature short-time extrusion cooking of wheat starch and flour. I. Effect of moisture and flour type on extrudate properties. Cereal Chemistry, 59, 529–533.

    Google Scholar 

  • Fletcher, S. I., Richmond, P., & Smith, A. C. (1985). An experimental study of twin screw extrusion-cooking of maize grits. Journal of Food Engineering, 4, 291–295.

    Article  Google Scholar 

  • Gujral, H. S., Singh, N., & Singh, B. (2001). Extrusion behavior of grits from flint and sweet corn. Food Chemistry, 74, 303–308.

    Article  CAS  Google Scholar 

  • Harper, J. M. (1989). Food extruders and their applications. In C. Mercier, P. Linko, & J. M. Harper (Eds.), Extrusion cooking (pp. 1–15). St. Paul: American Association of Cereal Chemists.

    Google Scholar 

  • Hsieh, F., Mulvaney, S. J., Huff, H. E., Lue, S., & Brent, J. J. (1989). Effect of dietary fiber and screw speed on some extrusion processing and product variables. Lebensm.-Wiss u.-Technology, 22, 204–207.

    Google Scholar 

  • İbanoğlu, Ş., Ainsworth, P., & Hayes, G. A. (1996). Extrusion of tarhana: Effect of operating variables on starch gelatinization. Food Chemistry, 57, 541–544.

    Article  Google Scholar 

  • Ingrid, I. M., Helen, N. A., & Ahmad, M. H. (1993). Biochemical composition and storage of Japanican yams (Dioscorea sp). Journal of the Science of Food and Agriculture, 62, 219–224.

    Article  Google Scholar 

  • Iwe, M. O. (2000). Effects of extrusion cooking on some functional properties of soy-sweet potato mixtures—A response surface analysis. Plant Foods for Human Nutrition, 55, 169–184.

    Article  CAS  Google Scholar 

  • Iwe, M. O., & Ngoddy, P. O. (1998). Proximate composition and some functional properties of extrusion cooked soybean and sweet potato blends. Plant Foods for Human Nutrition, 53, 121–132.

    Article  Google Scholar 

  • Jin, Z., Hsieh, F., & Huff, H. E. (1994). Extrusion cooking of corn meal with soy fiber, salt, and sugar. Cereal Chemistry, 71, 227–234.

    Google Scholar 

  • Kokini, J. L., Chang, C.-N., & Lai, L.-S. (1992). The role of rheological properties on extrudate expansion. In J. L. Kokini, C.-T. Ho, & M. V. Karwe (Eds.), Food extrusion science and technology (Vol. 740, pp. 631–652). New York: Marcel Dekker.

    Google Scholar 

  • Köksel, H., Ryu, G. H., Basman, A., & Demiralp, H. (2004). Effects of extrusion variables on the properties of waxy hulless barley extrudates. Nahrung, 48, 19–24.

    Article  Google Scholar 

  • Kulkarni, S. D., Joshi, K. C., Venkatraj, J., & Venkatraghavan, U. (1997). Extrusion cooking of soy-cereal and tuber blends: Product properties. Journal of Food Science and Technology, 34, 509–512.

    Google Scholar 

  • Launay, B., & Lisch, L. M. (1983). Twin screw extrusion cooking of starches: Flow behaviour of starch pastes, expansion and mechanical properties of extrudates. Journal of Food Engineering, 2, 259–280.

    Article  CAS  Google Scholar 

  • Lawton, B. T., & Handerson, B. A. (1972). The effects of extruder variables on the gelatinization of corn starch. The Canadian Journal of Chemical Engineering, 50, 168–172.

    Article  CAS  Google Scholar 

  • Leonel, M., de Freitas, T. S., & Mischan, M. M. (2009). Physical characteristics of extruded cassava starch. Scientia Agricola, 66, 486–493.

    Article  Google Scholar 

  • Liu, S. Y., Wang, J. Y., Shyu, Y. T., & Song, L. M. (1995). Studies on yam (Disscorea spp.) in Taiwan. Journal of Chinese Medicine, 6, 111–126.

    Google Scholar 

  • Liu, S.-Y., Chang, T.-W., Lin, Y.-K., Chen, S.-F., Wang, J.-Y., Zu, G.-L., et al. (1999). Studies on the varietal characters, production potential, phytochemical properties, and antioxidant effect of Dioscorea spp. Journal of Agricultural Research of China, 48, 1–22.

    CAS  Google Scholar 

  • Lue, S., Hsieh, F., & Huff, H. E. (1991). Extrusion cooking of corn meal and sugar beet fiber: Effects on expansion properties, starch gelatinization, and dietary fiber content. Cereal Chemistry, 68, 227–234.

    CAS  Google Scholar 

  • Maga, J. A., Liu, M. B., & Rey, T. (1993). Taro (Colocasia esculenta) extrusion. Carbohydrate Polymers, 21, 177–178.

    Article  Google Scholar 

  • Mazumder, P., Roopa, B. S., & Bhattacharya, S. (2007). Textural attributes of a model snack food at different moisture contents. Journal of Food Engineering, 79, 511–516.

    Article  Google Scholar 

  • Mercier, C. (1977). Effects of extrusion-cooking on potato starch using a twin screw French extruder. Stärke, 29, 48–52.

    Article  CAS  Google Scholar 

  • Mezreb, K., Goullieux, A., Ralainirina, R., & Queneudec, M. (2003). Application of image analysis to measure screw speed influence on physical properties of corn and wheat extrudates. Journal of Food Engineering, 57, 145–152.

    Article  Google Scholar 

  • Nurtama, B., & Lin, J.-S. (2009). Effects of process variables on the physical properties of taro extrudate. World Journal of Dairy and Food Sciences, 4, 154–159.

    Google Scholar 

  • Omonigho, S. E., & Ikenebomeh, M. J. (2000). Effect of temperature treatment on the chemical composition of pounded white yam during storage. Food Chemistry, 71, 215–220.

    Article  CAS  Google Scholar 

  • Owusu-Ansah, J., Van De Voort, F. R., & Stanley, D. W. (1984). Textural and microstructural changes in corn starch as a function of extrusion variables. Journal of Canadian Institute of Food Science and Technology, 17, 65–70.

    Google Scholar 

  • Őzer, E. A., İbanoğlu, Ş., Ainsworth, P., & Yağmur, C. (2004). Expansion characteristics of a nutritious extruded snack food using response surface methodology. European Food Research and Technology, 218, 474–479.

    Article  Google Scholar 

  • Rampersad, R., Badrie, N., & Comissiong, E. (2003). Physicochemical and sensory characteristics of flavoured snacks from extruded cassava/pigeonpea flour. Journal of Food Science, 68, 363–367.

    Article  CAS  Google Scholar 

  • Rayas-Duarte, P., Majewska, K., & Doetkott, C. (1998). Effect of extrusion process parameters on the quality of buckwheat flour mixes. Cereal Chemistry, 75, 338–345.

    Article  CAS  Google Scholar 

  • Repo-Carrasco-Valencia, R., Pena, J., Kallio, H., & Salminen, S. (2009). Dietary fiber and other functional components in to varieties of crude and extruded kiwicha (Aaranthus caudatus). Journal of Cereal Science, 49, 219–224.

    Article  CAS  Google Scholar 

  • Rhee, K.-S., Cho, S.-H., & Pradahn, A. M. (1999). Expanded extrudates from corn starch–lamb blends: Process optimization using response surface methodology. Meat Science, 52, 127–134.

    Article  CAS  Google Scholar 

  • Rodríguez-Miranda, J., Ruiz-López, I. I., Herman-Lara, E., Martínez-Sánchez, C. E., Delgado-Licon, E., & Vivar-Vera, M. A. (2011). Development of extruded snacks using taro (Colocasia esculenta) and nixtamalized maize (Zea mays) flour blends. LWT - Food Science and Technology, 44, 673–680.

    Article  Google Scholar 

  • Shewry, P. R. (2003). Tuber storage proteins. Annals Botany, 91, 1–15.

    Article  Google Scholar 

  • Shih, M.-C., Kuo, C.-C., & Chiang, W. (2009). Effects of drying and extrusion on colour, chemical composition, antioxidant activities and mitogenic response of spleen lymphocytes of sweet potatoes. Food Chemistry, 117, 114–121.

    Article  CAS  Google Scholar 

  • Shimelis, E. A., & Rakshit, S. K. (2007). Effect of processing on antinutrients and in vitro digestibility of kidney bean (Phaseolus vulgaris L.) varieties grown in East Africa. Food Chemistry, 103, 161–172.

    Article  CAS  Google Scholar 

  • Singh, B., Sekhon, K. S., & Singh, N. (2007). Effects of moisture, temperature and level of pea grits on extrusion behaviour and product characteristics of rice. Food Chemistry, 100, 198–202.

    Article  CAS  Google Scholar 

  • Stojceska, V., Ainsworth, P., Plunkett, A., & İbanoğlu, Ş. (2009). The effect of extrusion cooking using different water feed rates on quality of ready-to-eat snacks made from food by-products. Food Chemistry, 114, 226–232.

    Article  CAS  Google Scholar 

  • Stojceska, V., Ainsworth, P., Plunkett, A., & İbanoğlu, Ş. (2010). The advantage of using extrusion processing for increasing dietary fibre level in gluten-free products. Food Chemistry, 121, 156–164.

    Article  CAS  Google Scholar 

  • Thymi, S., Krokida, M. K., Pappa, Z. B., & Maroulis, Z. B. (2005). Structural properties of extruded corn starch. Journal of Food Engineering, 68, 519–526.

    Article  Google Scholar 

  • Wanasundara, J. P. D., & Ravindran, G. (1992). Effects of cooking on the nutrient and antinutrient of yam tubers (Dioscorea alata and Dioscorea esculenta). Food Chemistry, 45, 247–250.

    Article  Google Scholar 

  • Wanasundara, J. P. D., & Ravindran, G. (1994). Nutritional assessment of yam (Dioscorea alata) tubers. Plant Foods for Human Nutrition, 46, 33–39.

    Article  Google Scholar 

  • Yağcı, S., & Göğüş, F. (2008). Response surface methodology for evaluation of physical and functional properties of extruded snack foods developed from food-by-products. Journal of Food Engineering, 86, 122–132.

    Article  Google Scholar 

  • Yanniotis, S., Petraki, A., & Soumpasi, E. (2007). Effect of pectin and wheat fibers on quality attributes of extruded cornstarch. Journal of Food Engineering, 80, 594–599.

    Article  CAS  Google Scholar 

  • Yu, L., Ramaswamy, H. S., & Boye, J. (2009). Twin-screw extrusion of corn flour and soy protein isolate (SPI) blends: A response surface analysis. Food and Bioprocess Technology, doi:10.1007/s11947-009-0294-8.

  • Zieliński, H., & Troszyńska, A. (2000). Antioxidant capacity of raw and hydrothermal processed cereal grains. Journal of Food and Nutrition Science, 9, 79–83.

    Google Scholar 

Download references

Acknowledgment

The financial support for our research from the Taiwan Agricultural Research Institute is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Chyau Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiu, HW., Peng, JC., Tsai, SJ. et al. Process Optimization by Response Surface Methodology and Characteristics Investigation of Corn Extrudate Fortified with Yam (Dioscorea alata L.). Food Bioprocess Technol 6, 1494–1504 (2013). https://doi.org/10.1007/s11947-012-0894-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-012-0894-6

Keywords

Navigation