Skip to main content
Log in

Moisture Adsorption Characteristics of Solar-Dehydrated Mango and Jackfruit

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The moisture adsorption isotherms of solar dehydrated mango and jackfruit were determined at temperatures ranging from 30 °C to 50 °C. The equilibrium moisture content (EMC) of mango and jackfruit increased sharply as the temperature increased at water activity (a w) above 0.6 and 0.8, respectively. However, there were no clear isothermal intersection points observed at higher a w and temperatures. The EMC of solar dehydrated jackfruit showed the isothermal characteristics between types II and III. In contrast, dehydrated mango followed the characteristic type III adsorption isotherms due to high total soluble solids content of 67.8 °Brix and total sugars of 14.21 g/100 g fresh mango. Estimated parameters and fitting ability of three isotherm models were also evaluated. The Guggenheim-Anderson-Boer (GAB) model gave the best fit to the experimental EMC data. The GAB monolayer moisture contents (m o) of mango and jackfruit ranged from 11.1–10.0 % and 4.7–3.4 %, respectively. Specific surface area of active binding sites (S) was calculated based on the m o values. The S value of dehydrated mango was 2.5 to 2.8 times larger than jackfruit. The maximum net isosteric heat (q s) of sorption of solar dehydrated mango and jackfruit were determined as 19.5 and 33 kJ mol−1, respectively, and q s decreased significantly at high moisture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

a, b, c :

Henderson and Chung-Pfost model parameters

a w :

Water activity

C K :

GAB model parameters

c o k o :

Entropic accommodation factors

d.b.:

Dry basis (%)

df:

Degrees of freedom

e :

Temperature dependence constant of monolayer (K)

EMC:

Equilibrium moisture content (g/100 g dry matter)

ERH:

Equilibrium relative humidity (%)

g :

Monolayer and multiplayer water enthalpy difference (K)

GAB:

Guggenheim-Anderson-Boer equations

h i :

Molar sorption enthalpy of free water (J mol−1)

h m :

Monolayer sorption enthalpy (J mol−1)

h n :

Multilayer molar sorption enthalpy (J mol−1)

i :

Multilayer and free water enthalpy difference (K)

m :

Moisture content (g/100 g dry matter)

M :

Moisture content (% d.b.)

m a :

Temperature dependence of monolayer (K)

MCPE:

Modified Chung-Pfost equation

MHEE:

Modified Henderson equation

m i :

Observed moisture content (g/100 g dry matter)

m o :

Monolayer moisture content (g/100 g dry matter)

m p :

Predicted moisture content (g/100 g dry matter)

P :

Mean relative percentage deviation modulus (%)

p :

Probability value

q s :

Isosteric heat of sorption (J mol−1)

R :

Universal gas constant (8.314 J mol−1 K−1)

r.h.:

Relative humidity (%)

R 2 :

Regression coefficient

rpm:

Round per minute

RSS:

Residual sum of squares

S :

Specific surface area (m2 g−1)

SD:

Standard deviation

SEE:

Standard error of estimate

T :

Absolute temperature (K)

TA:

Titratable acidity (%)

TSS:

Total soluble solids content (°Brix)

w.b.:

Wet basis (%)

References

  • Aguerre, R. J., Suarez, C., & Viollaz, P. E. (1989). Swelling and pore structure in starchy materials. Journal of Food Engineering, 9, 71–80.

    Article  Google Scholar 

  • AOAC. (1996). Official method of analysis. Washington, DC: Association of Official Analytical Chemists.

    Google Scholar 

  • Bellagha, S., Sahli, A., & Farhat, A. (2008). Desorption isotherms and isoseteric heat of three Tunisian date cultivars. Food and Bioprocess Technology, 1, 270–275.

    Article  Google Scholar 

  • Blahovec, J. (2004). Sorption isotherms in materials of biological origin mathematical and physical approach. Journal of Food Engineering, 65, 489–495.

    Article  Google Scholar 

  • Blahovec, J., & Yanniotis, S. (2008). GAB generalized equation for sorption phenomena. Food and Bioprocess Technology, 1, 82–90.

    Article  Google Scholar 

  • Cernisev, S. (2010). Effect of conventional and multistage drying processing on non-enzymatic browning in tomato. Journal of Food Engineering, 96, 114–118.

    Article  Google Scholar 

  • Chowdhury, F. A., Raman, M. A., & Mian, A. J. (1997). Distribution of free sugars and fatty acids in jackfruit (Artocarpus heterophyllus). Food Chemistry, 60, 25–28.

    Article  CAS  Google Scholar 

  • Chung, S. G., & Pfost, H. B. (1976). Summarizing and reporting equilibrium moisture data for grains (pp. 76–3520). St. Joseph: American Society of Agriculture Engineers.

    Google Scholar 

  • Esper, A., & Mühlbauer, W. (1996). Solar tunnel dryer for fruits. Plant Research and Development, 44, 61–80.

    Google Scholar 

  • Falade, K. O., Olukini, I., & Adegoke, G. O. (2004). Adsorption isotherm and heat of sorption of somatically pretreated and air-dried pineapples slices. European Food Research and Technology, 218, 540–543.

    Article  CAS  Google Scholar 

  • Hayoglu, I., & Gamli, O. F. (2007). Water sorption isotherms of pistachio nut paste. International Journal of Food Science and Technology, 43, 224–227.

    Google Scholar 

  • Hubinger, M., Menegalli, F. C., Aguerre, R. J., & Suarez, C. (1992). Water vapor adsorption isotherms of guava, mango and pineapple. Journal of Food Science, 57, 1405–1407.

    Article  CAS  Google Scholar 

  • Illeperuma, C. K., & Jayasuriya, P. (2002). Prolonged storage of ‘Karthakolomban’ mango by modified atmosphere packaging at low temperature. The Journal of Horticultural Science and Biotechnology, 77, 153–157.

    Google Scholar 

  • SAS Institute (1990) SAS language and procedures, version 6.1st edition. SAS Institute, Cary, NC.

  • Isse, M. G., Schuchmann, H., & Schubert, H. (1993). Divided sorption isotherm concept: An alternative way to describe sorption isotherm data. Journal of Food Process Engineering, 16, 147–157.

    Article  Google Scholar 

  • Kiranoudis, C. T., Maroulis, Z. B., Tsami, M., & Marinos-Kouris, D. (1993). Equilibrium moisture content and heat of desorption of some vegetables. Journal of Food Engineering, 20, 55–74.

    Article  Google Scholar 

  • Labuza, T. P., Kannane, A., & Chen, J. (1985). Effect of temperature on the moisture sorption isotherm and water activity shift of two dehydrated foods. Journal of Food Science, 50, 385–392.

    Article  CAS  Google Scholar 

  • Lewicki, P. P. (1997). The applicability of the GAB model to food water sorption isotherms. International Journal of Food Science and Technology, 32, 553–557.

    Article  CAS  Google Scholar 

  • Lutz, K., Muhlbauer, W., Muller, J., & Reisinger, G. (1987). Development of multi-purpose solar crop dryer for arid zones. Solar and Wind Technology, 4, 417–428.

    Article  Google Scholar 

  • Mir, A. M., & Nath, N. (1995). Sorption isotherms of fortified mango bars. Journal of Food Engineering, 25, 141–150.

    Article  Google Scholar 

  • Ngoddy, P. O., & Bakker-Arkema, F. W. (1970). A generalized theory of sorption phenomena in biological materials (Part I. The isotherm equation). Transactions of ASAE, 13, 612–617.

    Google Scholar 

  • Ngoddy, P. O., & Bakker-Arkema, F. W. (1972). A generalized theory of sorption phenomena in biological materials. Part III—A pore size distribution function of the power law type for biological materials. Transactions of ASAE, 15, 1160–1164.

    Google Scholar 

  • Quirijns, E. J., van Boxtel, A. J. B., van Loon, W. K. P., & van Straten, G. (2005). Sorption isotherms, GAB parameters and isosteric heat of sorption. Journal of the Science of Food and Agriculture, 85, 1805–1814.

    Article  CAS  Google Scholar 

  • Rahman, A. K. M., Huq, E., Mian, A. J., & Chesson, A. (1995). Microscopic and chemical changes occurring during the ripening of two forms of jackfruit (Artocarpus heterophyllus L.). Food Chemistry, 52, 405–410.

    Article  CAS  Google Scholar 

  • Ranganna, S. (1986). Hand book of analysis and quality control for fruit and vegetable products (2nd ed.). New Delhi: Tata McGraw-Hill Publishing Company Limited.

    Google Scholar 

  • Saravacos, G. D., Tsiourvas, D. A., & Tsami, E. (1986). Effect of temperature on the water adsorption isotherms of sultana raisins. Journal of Food Science, 51, 381–383.

    Article  Google Scholar 

  • Sato, Y., Wada, Y., & Higo, A. (2010). Relationship between monolayer and multilayer water contents, and involvement in gelatinization of baked starch products. Journal of Food Engineering, 96, 172–178.

    Article  CAS  Google Scholar 

  • Schirmer, P., Janjai, S., Esper, A., Smitabhindu, R., & Muhlbauer, W. (1996). Experimental investment of the performance of the solar tunnel dryer for drying bananas. Renewable Energy, 7, 119–129.

    Article  Google Scholar 

  • Singh, P. C., & Singh, R. K. (1996). Application of GAB model for water sorption isotherms of food products. Journal of Food Processing and Preservation, 20, 203–220.

    Article  Google Scholar 

  • Singh, B., Panesar, P. S., Gupta, A. K., & Kennedy, J. F. (2006). Sorption isotherm behavior of osmoconvectively dehydrated carrot cubes. Journal of Food Processing and Preservation, 30, 684–698.

    Article  Google Scholar 

  • Sun, D.-W. (1999). Comparison and selection of EMC/ERH isotherm equations for rice. Journal of Stored Products Research, 35, 249–264.

    Article  Google Scholar 

  • Sun, D.-W., & Woods, J. L. (1994). The selection of sorption isotherm equation for wheat based on the fitting of available data. Journal of Stored Products Research, 24, 22–474.

    Google Scholar 

  • Thompson, T. L., Peart, R. M., & Foster, G. H. (1968). Mathematical simulation of corn drying—A new model. Transactions of ASAE, 11, 582–586.

    Google Scholar 

  • Togrul, H., & Arslan, N. (2006). Moisture sorption behaviour and thermodynamic characteristics of rice stored in a chamber under controlled humidity. Biosystems Engineering, 95, 181–195.

    Article  Google Scholar 

  • Tortoe, C., & Orchard, J. (2006). Microstructural changes of osmotically dehydrated tissues of apple, banana and potato. Scanning, 28, 172–178.

    Article  Google Scholar 

  • Tsami, E., Marinos-Kouris, D., & Maroulis, Z. B. (1990). Water sorption isotherms of raisins, currants, figs, prunes and apricots. Journal of Food Science, 55, 1594–1597.

    Article  Google Scholar 

  • Tsami, E., Maroulis, Z. B., Marinos-Kouris, D., & Saravacos, G. D. (1990). Heat of sorption of water in dried fruits. International Journal of Food Science and Technology, 25, 350–359.

    CAS  Google Scholar 

  • Van den Berg, C. (1984). Description of water activity of food for engineering purposes by means of the GAB model of sorption. In B. M. Mckenna (Ed.), Engineering and Food (pp. 21–311). London: Elsevier Applied Science.

    Google Scholar 

  • Verma, V. K., & Narain, M. (1990). Moisture absorption isotherms of jaggery. Journal of Stored Product Research, 26, 61–66.

    Article  Google Scholar 

  • Wexler, A. (1999). Constant humidity solutions. In D. R. Lide (Ed.), CRC handbook of chemistry and physics (pp. 15–25). New York: CRC Press.

    Google Scholar 

  • Yanniotis, S., & Blahovec, J. (2009). Model analysis of sorption isotherm. LWT-Food Science and Technology, 42, 1688–1695.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank Jatal Mannapperuma (PGIA, University of Peradeniya, Sri Lanka) and Judy Johnson (USDA-ARS, Parlier, CA 93648, USA) for their valuable guidance and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D. Rohitha Prasantha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasantha, B.D.R., Amunogoda, P.N.R.J. Moisture Adsorption Characteristics of Solar-Dehydrated Mango and Jackfruit. Food Bioprocess Technol 6, 1720–1728 (2013). https://doi.org/10.1007/s11947-012-0832-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-012-0832-7

Keywords

Navigation