Skip to main content
Log in

A Colour Ripeness Indicator for Apples

  • Communication
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Ripeness and senescence of climacteric fruits are strongly related to the emission of ethylene gas. The ethylene emission of apples can be detected by a new developed ripeness indicator. This indicator is based on the reduction effect of ethylene causing colour changes in selected metal ions. The used molybdenum (Mo) chromophores change under the impact of ethylene in a colour spectrum from white/light yellow to blue because of a partial reduction of Mo(VI) to Mo(V). The sensitivity of molybdenum colour change reactions can be varied by composition and pH values (pH 1.4–pH 1.5) of used ammonium molybdate solution and thus adopted to different fruits and storage conditions. The indicator can be combined with a colour recognition sensor for quantitative measurements of colour change in the frame of the L*a*b* model. The b*-coordinate, reflecting changes from yellow to blue, and the luminance L* continuously vary with increasing ethylene emission. Results obtained with the indicator system were compared with direct determination of ethylene concentrations by gas chromatography (GC-FID). Furthermore, a descriptive sensory test was used to estimate the degree of ripeness. The indicator can be applied for ripeness gauge on single fruit or in paperboard crates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Abeles, F. B., Morgan, P. W., & Salviet, M. E. (1992). Ethylene in plant biology. San Diego: Academic.

    Google Scholar 

  • Azarte-Vázquez, I., Chanona-Pérez, J. J., Perea-Flores, M., Calderón-Dominguez, G., Moreno-Armendóriz, M. A., Calvo, H., et al. (2011). Image processing applied to classification of avocado variety hass (Persea americana Mill.) during the ripening process. Food Bioprocess Technology, 4, 1307–1313.

    Article  Google Scholar 

  • Berger, O., Fischer, W. (2008). Substoichiometric sensors for CO2 and ethylene control. In: Proceedings eurosensors XXII (pp. 1060–1063). Dresden, Germany.

  • Blanke, M. (2008). Tragbares Ethylenmessgerät mit hoher Auflösung durch neue Sensortechnologie. Erwerbs-Obstbau, 50, 77–84.

    Article  Google Scholar 

  • Blankenship, S., & Unrath, C. R. (1988). Pal and ethylene content during maturation of Red and Golden Delicious apples. Phytochemistry, 27, 1001–1003.

    Article  CAS  Google Scholar 

  • Csanyi, L. (1989). Peroxide derivatives of molybdenum(VI) in acidic solution. Transition Metal Chemistry, 14, 289–302.

    Google Scholar 

  • De-Liang, L., Tsunashima, R., & Cronin, L. (2010). Polyoxoxmetallate als Bausteine für funktionelle Nanosysteme. Angewandte Chemie (International Ed. in English), 122, 1780–1803.

    Google Scholar 

  • Dilley, D. R. (1981). Assessing fruit maturity and ripening and techniques to delay ripening in storage. Annual Report of Michigan State Horticultural Society, 110, 132–146.

    Google Scholar 

  • DIN 10964: 1996–02 (1996). Sensorische Prüfverfahren—Einfach beschreibende Prüfung.

  • DIN 6174: 2007–10 (2007). Farbmetrische Bestimmung von Farbmaßzahlen und Farbabständen im angenähert gleichförmigen CIELAB-Farbenraum.

  • Francis, F. J. (1983). Colorimetry of foods. In M. Peleg & E. B. Bagley (Eds.), Physical properties of food (pp. 105–123). Westport: AVI.

    Google Scholar 

  • Giberti, A., Carotta, M. C., Guidi, V., Malagù, C., Martinelli, G., Piga, M., et al. (2004). Monitoring of ethylene for agro-alimentary applications and compensation of humidity effects. Sensors and Actuators B: Chemical, 103, 272–276.

    Article  CAS  Google Scholar 

  • Gouzerh, P., & Che, M. (2006). Polyoxometalates (POMs) revisited and the “missing link” between the bottom up and top down approaches. Actualite Chimique, 298, 9–22.

    CAS  Google Scholar 

  • Hildenbrand, J., Hartwig, S., Eberhardt, A., Halford, B., Moreno, M., Fonollosa, J., et al. (2008). A compact optical multichannel system for ethylene monitoring. Microsystem Technologies, 14, 637–644.

    Article  CAS  Google Scholar 

  • Ivanov, P., Llobet, E., Vergara, A., Stankova, M., Vilanova, X., Hubalek, J., et al. (2005). Towards a micro-system for monitoring ethylene in warehouses. Sensors and Actuators B: Chemical, 111–112, 63–70.

    Article  Google Scholar 

  • Jadsadapattarakula, D., Thanachayanont, C., Nukeaw, J., & Sooknoi, T. (2010). Improved selectivity, response time and recovery time by [0 1 0] highly preferred-orientation silicalite-1 layer coated on SnO2 thin film sensor for selective ethylene gas detection. Sensors and Actuators B: Chemical, 144, 73–80.

    Article  Google Scholar 

  • Jordan, L. R., & Hauser, P. C. (1997). Amperometric sensor for monitoring ethylene. Analytical Chemistry, 69, 558–562.

    Article  CAS  Google Scholar 

  • Kim, J. H., & Shiratori, S. (2006). Fabrication of color film to detect ethylene gas. Japanese Journal of Applied Physics, 45, 4274–4278.

    Article  CAS  Google Scholar 

  • Klein, R., Riley, N., DeCianne, D., Srinavakul, N. (2006). Non-invasive colorimetric ripeness indicator. U.S. Patent number US 2006/0127543 A1, June 15, 2006.

  • Li, W., Shao, Y., Chen, W., & Jia, W. (2011). The effect of harvest maturity on storage quality and sucrose-metabolizing enzymes during banana ripening. Food Bioprocess Technology, 4, 1273–1280.

    Article  CAS  Google Scholar 

  • Mota, L. M., Aquiar, A., Ferreira, I., & Guedes de Pinho, P. (2011). Volatile profiling of kiwifruits (Actinidia deliciosa ‘Hayward’) evaluated by HS-SPME and GC-IT/MS: influence of ripening, training system and storage. Food Bioprocess Technology. doi:10.1007/s11947-011-0602-y.

  • Müller, A., Krickemeyer, E., Meyer, J., Bögge, H., Peters, H., Plass, W., et al. (1995). [Mo154(NO)14O420(OH)28(H2O)70](25 ± 5)−: a water-soluble big wheel with more than 700 atoms and a relative molecular mass of about 24000. Angewandte Chemie (International Ed. in English), 34(19), 2122–2124.

    Article  Google Scholar 

  • Pope, M. T. (1983). Heteropoly and oxometalates. New York: Springer Verlag.

    Book  Google Scholar 

  • Quickert, N., Findlay, W. J., & Monkman, J. L. (1975). Modification of a chemiluminescent ozone monitor for the measurement of gaseous unsaturated hydrocarbons. The Science of the Total Environment, 3, 323–328.

    Article  CAS  Google Scholar 

  • Saari, H., Mannila, R., Antila, J., Blomberg, M., Rusanen, O., Tenhunen, J., et al. (2000). Miniaturised gas sensor using a micromachined Fabry-Perot interferometer. Preparing for the Future, 10, 4–5.

    Google Scholar 

  • Schilt, S., Kosterev, A. A., & Tittel, F. K. (2009). Performance evaluation of a near infrared QEPAS based ethylene sensor. Applied Physics B, 95, 813–824.

    Article  CAS  Google Scholar 

  • Trysberg, L., & Stomberg, R. (1981). Studies on peroxomolybdates. Acta Chemica Scandinavica. Series A, 35, 823–825.

    Article  Google Scholar 

  • Wahl, E. H., Tan, S. M., Koulikov, S., Kharlamov, B., Rella, C. R., & Crosson, E. R. (2006). Ultra-sensitive ethylene post-harvest monitor based on cacity ring-down spectroscopy. Optics Express, 14, 1673–1684.

    Article  CAS  Google Scholar 

  • Zhou, Z. H., Hou, S. Y., & Wan, H. L. (2004). Peroxomolybdate(VI)–citrate and –malate complex interconversions by pH-dependence. Synthetic, structural and spectroscopic studies. Dalton Transactions, 9, 1393–139.

    Article  Google Scholar 

Download references

Acknowledgement

We are grateful to K.-P. Gründer for support in colour measurements. This work has been financially supported by the BMBF project “ProSenso.Net2” (FKZ 0339992A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Hübert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, C., Hübert, T. A Colour Ripeness Indicator for Apples. Food Bioprocess Technol 5, 3244–3249 (2012). https://doi.org/10.1007/s11947-011-0694-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0694-4

Keywords

Navigation