Skip to main content
Log in

Recovery of Native Potato Protein Comparing Expanded Bed Adsorption and Ultrafiltration

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Obtaining native protein from potato fruit water (PFW) acceptable for food consumption was attempted by comparing expanded bed adsorption (EBA) and ultrafiltration (UF).The methods were assessed on their process performance and the product quality. Extractable tuber proteins were recovered from lab-prepared PFW either by adsorption to an EBA column using a mixed mode resin (0.31 L) or by batch concentration in an UF (10 kDa MWCO, 0.093 m2) unit and then freeze dried. The yields on protein and esterase activity were higher (p < 0.05 and p < 0.01; Mann–Whitney U-test) in UF (3.2 g l−1 PFW and 3.17 kU l−1 PFW) than in EBA (1.8 and 1.21). The performance difference was also reflected in process productivity for esterase activity which was fivefold better (p < 0.01) in UF (4.30 kU h−1) than with EBA (0.84) due to the higher enzyme retention; protein productivities were the same. The content of solanidine glycoalkaloids was depleted to moderate levels but came out unaffected by the processing method: EBA 286 ppm, UF 213 ppm. The low levels of chlorogenic acid in all EBA preparations were negatively correlated to high brightness score (L* = 73.8%), a favorable attribute in food-quality proteins. Both methodologies produced native preparations of comparable protein content (75%). EBA processing, however, increased the fraction of the patatin protein which may offer advantages in food applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

C :

Concentration outlet

C 0 :

Concentration inlet

CF:

Concentration factor

CV:

Column volume of settled resin

CQA:

Chlorogenic acid

EAAI:

Essential amino acid index

EBA:

Expanded bed adsorption

expCV:

Column volume of the expanded resin

L*:

Brightness

MiMo:

Mixed mode

MWCO:

Molecular weight cutoff

PFW:

Potato fruit water

PI:

Protease inhibitor

R app :

Apparent rejection coefficient

RO:

Reverse osmosis

TGA:

Total glycoalkaloids

TMP:

Transmembrane pressure

UF:

Ultrafiltration

References

  • Alt, V., Steinhof, R., Lotz, M., Ulber, R., Kasper, C., & Scheper, T. (2005). Optimization of glycoalkaloid analysis for use in industrial potato fruit juice downstreaming. Engineering in Life Sciences, 5(6), 562–567.

    Article  CAS  Google Scholar 

  • Andersson, J., Sahoo, D., & Mattiasson, B. (2008). Isolation of potato proteins using simulated moving bed technology. Biotechnology and Bioengineering, 101(6), 1256–1263.

    Article  CAS  Google Scholar 

  • Bartova, V., & Barta, J. (2009). Chemical composition and nutritional value of protein concentrates isolated from potato (Solanum tuberosum L.) fruit juice by precipitation with ethanol or ferric chloride. Journal of Agricultural and Food Chemistry, 57(19), 9028–9034.

    Article  CAS  Google Scholar 

  • Bidinger, S. C. (1992). Wertstoffgewinnung aus Abwässern/Recovery of valuable substances from waste water. Internationale Zeitschrift für Lebensmittel-Technologie (ZFL), 43(5), 222–228.

    Google Scholar 

  • Bohac, J. R. (1991). A modified method to purify patatin from potato-tubers. Journal of Agricultural and Food Chemistry, 39(8), 1411–1415.

    Article  CAS  Google Scholar 

  • Bolivar, J. M., Batalla, P., Mateo, C., Carrascosa, A. V., Pessela, B. C., & Guisána, J. M. (2010). Selective adsorption of small proteins on large-pore anion exchangers coated with medium size proteins. Colloids and Surfaces, B: Biointerfaces, 78, 140–145.

    Article  CAS  Google Scholar 

  • Byrne, D. (2002). Commission decision of 15 February 2002 authorizing the placing on the market of coagulated potato proteins and hydrolysates thereof as novel food ingredients under Regulation (EC) No 258/97 of the European Parliament and of the Council. Official Journal of the European Communities, L, 50, 92–93.

    Google Scholar 

  • Claussen, I.C., Strømmen, I., Egelandsdal, B., Strætkvern, K.O. (2007). Effects of drying methods on functionality of a native potato protein concentrate drying technology, 25(6), 1091–1098.

  • D’Alvise, N., Lesueur-Lambert, C., Fertin, B., Dhulster, P., & Guillochon, D. (2000). Removal of polyphenols and recovery of proteins from alfalfa white protein concentrate by ultrafiltration and adsorbent resin separations. Separation Science and Technology, 35(15), 2453–2472.

    Article  Google Scholar 

  • Dao, L., & Friedman, M. (1992). Chlorogenic acid content of fresh and processed potatoes determined by ultraviolet spectrophotometry. Journal of Agricultural and Food Chemistry, 40(11), 2152–2156.

    Article  CAS  Google Scholar 

  • Eriksson, G., & Sivik, B. (1976). Ultrafiltration of potato process water—influence of processing variables. Potato Research, 19, 279–287.

    Article  Google Scholar 

  • Giuseppin, M.L.F., van der Sluis, C., Laus, M.C. (2008). Native potato protein isolates. Patent No WO 2008/069650.

  • Graf, A. M., Steinhof, R., Lotz, M., Tippkotter, N., Kasper, C., Beutel, S., et al. (2009). Downstream-processing with membrane adsorbant on the isolation of native protein fractions from potato amniotic liquid. Chemie Ingenieur Technik, 81(3), 267–274.

    Article  CAS  Google Scholar 

  • Lihme, A., Hansen, M., Olander, M., & Zafirakos, E. (2000). Expanded bed adsorption in the purification of biomolecules. In Desai (Ed.), Methods in biotechnology (pp. 121–141). Totowa: Humana.

    Google Scholar 

  • Løkra, S., & Strætkvern, K. O. (2009). Industrial proteins from potato juice. A review. Food, 3(Special Issue 1), 88–95.

    Google Scholar 

  • Løkra, S., Helland, M. H., Claussen, I. C., Strætkvern, K. O., & Egelandsdal, B. (2008). Chemical characterization and functional properties of a potato protein concentrate prepared by large-scale expanded bed adsorption chromatography. LWT Food Science and Technology, 41(6), 1089–1099.

    Article  Google Scholar 

  • Løkra, S., Schüller, R. B., Egelandsdal, B., Engebretsen, B., & Strætkvern, K. O. (2009). Comparison of composition, enzyme activity and selected functional properties of potato proteins isolated from potato juice with two different expanded bed resins. LWT Food Science and Technology, 42(4), 906–913.

    Article  Google Scholar 

  • Nabetani, H., Abbott, T. P., & Kleiman, R. (1995). Optimal separation of jojoba protein using membrane processes. Industrial and Engineering Chemistry Research, 34(5), 1779–1788.

    Article  CAS  Google Scholar 

  • Oosten, B. J. (1976). Ultrafiltration of potato juice results in high yield of protein. Starch/Stärke, 28(4), 135–137.

    Article  Google Scholar 

  • Osman, A., El Agha, A., Makris, D. P., & Kefalas, P. (2009). Chlorogenic acid oxidation by a crude peroxidase preparation: biocatalytic characteristics and oxidation products. Food and Bioprocess Technology. doi:10.1007/s11947-009-0241-8.

    Google Scholar 

  • Ralet, M. C., & Guéguen, J. (2000). Fractionation of potato proteins: solubility, thermal coagulation and emulsifying properties. LWT Food Science and Technology, 33, 380–387.

    Article  CAS  Google Scholar 

  • Rausch, K. D. (2002). Front end to backpipe: membrane technology in the starch processing industry. Starch/Stärke, 54, 273–284.

    Article  CAS  Google Scholar 

  • Rüffer, H., Kremser, U., & Seekamp, M. (1997). Experiences with reverse osmosis pilot plant for the concentration of potato fruit water in the potato starch industry. Starch/Stärke, 49(9), 354–359.

    Article  Google Scholar 

  • Stevens, L. H., & Davelaar, E. (1996). Isolation and characterization of blackspot pigments from potato tubers. Phytochemistry, 42(4), 941–947.

    Article  CAS  Google Scholar 

  • Strætkvern, K. O., Schwarz, J. G., Wiesenborn, D. P., Zafirakos, E., & Lihme, A. (1999). Expanded bed adsorption for recovery of patatin from crude potato juice. Bioseparation, 7(6), 333–345.

    Article  Google Scholar 

  • Strætkvern, K.O., Aae Olander, M., Lihme, A. (2002). EBA processing of potato fruit water on mixed mode adsorbent for functional protein recovery: A difficult separation task made possible. In: DOWNSTREAM—Proceedings 4th International Conference on Expanded Bed Adsorption; EBA 02 St. Petersburg Beach, Florida, USA, pp 51–52. Amersham Biosciences, Uppsala, Sweden

  • Strætkvern, K. O., Løkra, S., Olander, M. A., & Lihme, A. (2005). Food-grade protein from industrial potato starch effluent recovered by an expanded bed adsorption process. Journal of Biotechnology, 118, S33–S33.

    Google Scholar 

  • Tsagaraki, E. V., & Lazarides, H. N. (2010). Fouling analysis and performance of tubular ultrafiltration on pretreated olive mill waste water. Food and Bioprocess Technology. doi:10.1007/s11947-010-0326-4.

    Google Scholar 

  • van Koningsveld, G. A., Walstra, P., Voragen, A. G. J., Kuijpers, I. J., Van Boekel, M., & Gruppen, H. (2006). Effects of protein composition and enzymatic activity on formation and properties of potato protein stabilized emulsions. Journal of Agricultural and Food Chemistry, 54(17), 6419–6427.

    Article  Google Scholar 

  • Wojnowska, I., Poznanski, S., & Bednarski, W. (1981). Processing of potato protein concentrates and their properties. Journal of Food Science, 47, 167–172.

    Article  CAS  Google Scholar 

  • Xu, L., & Diosady, L. L. (2002). Removal of phenolic compounds in the production of high-quality canola protein isolates. Food Research International, 35, 23–30.

    Article  CAS  Google Scholar 

  • Yang, H., & Etzel, M. R. (2003). Evaluation of three kinetic equations in models of protein purification using ion-exchange membranes. Industrial and Engineering Chemistry Research, 42, 890–896.

    Article  CAS  Google Scholar 

  • Zwijnenberg, H. J., Kemperman, A. J. B., Boerrigter, M. E., Lotz, M., Dijksterhuis, J. F., Poulsen, P. E., et al. (2002). Native protein recovery from potato fruit juice by ultrafiltration. Desalination, 144, 331–334.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the technical assistance of Mr. Matthew Whittiker, UMES food science technician, on potato juice extraction and various analytical procedures and of Mrs. Else Berit Stenseth, HUC senior lab technician, for performing the CQA analysis. Dr. Arne Linløkken, HUC, is acknowledged for the valuable advice on statistical analysis. We are especially indebted to Dr. Sacha Beutel, at the Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, for providing the HPLC analysis of glycoalkaloids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Knut Olav Strætkvern.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strætkvern, K.O., Schwarz, J.G. Recovery of Native Potato Protein Comparing Expanded Bed Adsorption and Ultrafiltration. Food Bioprocess Technol 5, 1939–1949 (2012). https://doi.org/10.1007/s11947-010-0494-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-010-0494-2

Keywords

Navigation