Skip to main content
Log in

Effect of Drying on the Color of Tarragon (Artemisia dracunculus L.) Leaves

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The effect of drying conditions on the color of tarragon (Artemisia dracunculus L.) leaves was studied. Tarragon leaves were dried at temperatures of 40 to 90 °C with a constant airflow of 0.6 m/s. The samples were collected at 7%, 10%, 20%, and 30% moisture content wet basis for evaluation of the color change. The color parameters of fresh and dried leaves were measured by a colorimeter. The individual parameters of L*a*b* and L*C*h° color systems were evaluated and h° proved to be the best parameter to monitor color change. The smallest change of the color parameters was observed at 40 °C, in which temperature was low, and also at 90 °C, when drying time was short. The biggest change occurred at the temperatures of 50 to 70 °C. Most of the color change happened before the material reaches 35% moisture content. The combination of drying time and temperature defines the change of color.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmed, J., Kaur, A., & Shivhare, U. (2002). Color degradation kinetics of spinach, mustard leaves, and mixed puree. Journal of Food Science, 67(3), 1088–1091.

    Article  CAS  Google Scholar 

  • Arabhosseini, A., Huisman, W., van Boxtel, A., & Mueller, J. (2005). Sorption isotherms of tarragon (Artemisia dracunculus L.) [Sorptionsisothermen von Estragon (Artemisia dracunculus L.)]. Zeitschrift für Arznei- und Gewürzpflanzen, 11(1), 48–51.

    Google Scholar 

  • Arabhosseini, A., Huisman, W., van Boxtel, A., & Mueller, J. (2008). Modeling of thin layer drying of tarragon (Artemisia dracunculus L.). Industrial Crops and Products, 28(2), 53–59.

    Google Scholar 

  • Berberich, J., Dee, K. H., Hayauchi, Y., & Portner, C. (2002). A new method to determine discoloration kinetics of uncoated white tablets occurring during stability testing—An application of instrumental color measurement in the development pharmaceutics. International Journal of Pharmaceutic, 234(1–2), 55–66.

    Article  CAS  Google Scholar 

  • Carreno, J., Martinez, A., Almela, L., & Fernandez-Lopez, J. A. (1995). Proposal of an index for the objective evaluation of the colour of red table grapes. Food Research International, 28(4), 373–377.

    Article  Google Scholar 

  • Commission Internationale de l’Eclairage. (1986). Colorimetry (2nd ed). Vienna, Austria: CIE Publication No. 15.2.

  • Du Toit, J., & Joubert, E. (1998). Effect of drying conditions on the quality of honeybush tea (Cyclopia). Journal of Food Processing and Preservation, 22(6), 493–507.

    Article  Google Scholar 

  • Ganjloo, A., Rahman, R. A., Osman, A., Baker, J., & Bimakr, M. (2009). Kinetics of crude peroxidase inactivation and color changes of thermally treated seedless Guava (Psidium guajava L.). Food and Bioprocess Technology, doi:10.1007/s11947-009-0245-4.

    Google Scholar 

  • García-Esteban, M., Ansorena, D., Gimeno, O., & Astiasarán, I. (2003). Optimization of instrumental colour analysis in dry-cured ham. Meat Science, 63(3), 287–292.

    Article  Google Scholar 

  • Guine, R. P. F., Henrriques, F., & Barroca, M. J. (2009). Mass transfer coefficients for the drying of pumpkin (cucurbita moschata) and dried product quality. Food and Bioprocess Technology, doi:10.1007/s11947-009-0245-4.

    Google Scholar 

  • Iwe, M. O., Van Zuilichem, D. J., & Ngoddy, P. O. (2000). Color of single-screw extruded blends of soy-sweet potato flour—A response surface analysis. Plant Foods for Human Nutrition, 55(2), 159–168.

    Article  CAS  Google Scholar 

  • Krokida, M. K., Tsami, E., & Maroulis, Z. B. (1998). Kinetics on color changes during drying of some fruits and vegetables. Drying Technology, 16(3–5), 667–685.

    Article  CAS  Google Scholar 

  • Lee, H. S., Coates, G. A., & Lee, H. S. (2003). Effect of thermal pasteurization on Valencia orange juice color and pigments. Food Science and Technology, 36(1), 153–156.

    CAS  Google Scholar 

  • Lozano, J. E., & Ibarz, A. (1997). Colour changes in concentrated fruit pulp during heating at high temperatures. Journal of Food Engineering, 31(3), 365–373.

    Article  Google Scholar 

  • Maharaj, V., & Sankat, C. K. (1996). Quality changes in dehydrated dasheen leaves: Effects of blanching pre-treatments and drying conditions. Food Research International, 29(5–6), 563–568.

    Article  Google Scholar 

  • Maskan, M. (2001). Kinetics of colour change of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48(2), 169–175.

    Article  Google Scholar 

  • McCaig, T. N. (2002). Extending the use of visible/near-infrared reflectance spectrophotometers to measure colour of food and agricultural products. Food Research International, 35(8), 731–736.

    Article  CAS  Google Scholar 

  • Patras, A., Brunton, N. P., Tiwari, B. K., & Butler, F. (2009). Stability and degradation kinetics of bioactive compounds and colour in strawberry jam during storage. Food and Bioprocess Technology, doi:10.1007/s11947-009-0226-7.

    Google Scholar 

  • Shin, S., & Bhowmik, S. R. (1995). Thermal kinetics of color changes in pea puree. Journal of Food Engineering, 24(1), 77–86.

    Article  Google Scholar 

  • Silva, F. M., & Silva, C. L. M. (1999). Colour changes in thermally processed cupuaçu (Theobroma grandiflorum) puree: Critical times and kinetics modelling. International Journal of Food Science and Technology, 34(1), 87–94.

    Article  CAS  Google Scholar 

  • Simon, J. E., Chadwick, A. F., & Craker, L. E. (1984). Herbs: An indexed bibliography, 1971–1980: The scientific literature on selected herbs and aromatic and medicinal plants of the temperate zone. Amsterdam: Elsevier.

    Google Scholar 

  • Suh, H. J., Noh, D. O., Kang, C. S., Kim, J. M., & Lee, S. W. (2003). Thermal kinetics of color degradation of mulberry fruit extract. Die Nahrung, 47(2), 132–135.

    Article  Google Scholar 

  • Vienne, M., Braemer, R., Paris, M., & Couderc, H. (1989). Chemotaxonomic study of two cultivars of Artemisia dracunculus L.: (“French” and “Russian” Tarragon). Biochemical Systematics and Ecology, 17(5), 373–374.

    Article  CAS  Google Scholar 

  • Yaichibe, T., Masanori, K., & Kenichi, A. (1997). Morphological characters and essential oil in Artemisia dracunculus (French Tarragon) and Artemisia dracuncloides (Russian Tarragon). Tokyo Nogyo Daigaku Nogaku Shuho, 41(4), 229–238.

    Google Scholar 

  • Zhang, M., De Baerdemaeker, J., & Schrevens, E. (2003). Effects of different varieties and shelf storage conditions of chicory on deteriorative color changes using digital image processing and analysis. Food Research International, 36(7), 669–676.

    Article  Google Scholar 

Download references

Acknowledgment

Financial support from Aboureyhan Campus, Tehran University, Ministry of Science, Research and Technology of Iran is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar Arabhosseini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arabhosseini, A., Padhye, S., Huisman, W. et al. Effect of Drying on the Color of Tarragon (Artemisia dracunculus L.) Leaves. Food Bioprocess Technol 4, 1281–1287 (2011). https://doi.org/10.1007/s11947-009-0305-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-009-0305-9

Keywords

Navigation