Skip to main content
Log in

Application of Image Analysis and Artificial Neural Network to Predict Mass Transfer Kinetics and Color Changes of Osmotically Dehydrated Kiwifruit

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The objectives of this study were to use image analysis and artificial neural network to predict mass transfer kinetics and color changes of osmotically dehydrated kiwifruit slices. Kiwifruits were dehydrated implementing four different sucrose concentrations, at three processing temperatures and during four osmotic time periods. A multilayer neural network was developed by using the operation conditions as inputs to estimate water loss, solid gain, and color changes. It was found that artificial neural network with 16 neurons in hidden layer gives the best fitting with the experimental data, which made it possible to predict solid gain, water loss, and color changes with acceptable mean-squared errors (1.005, 2.312, and 2.137, respectively). These results show that artificial neural network could potentially be used to estimate mass transfer kinetics and color changes of dehydrated kiwifruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdullah, M. Z., Mohamad-Saleh, J., Fathinul-Syahir, A. S., & Mohd-Azami, B. M. N. (2006). Discrimination and classification of fresh-cut starfruits (Averrhoa carambola L.) using automated machine vision system. Journal of Food Engineering, 76, 506–523.

    Article  Google Scholar 

  • Amin, M., Navaz H.K., Kehtarnavaz, N., & Dabiri D. (2009) A systematic approach for solving large-scale problems by neural network: Open refrigerated display cases and droplet evaporation problems. Food and Bioprocess Technology. doi: 10.1007/s11947-008-0167-6.

  • Amiryusefi MR, & Mohebbi M (2008) Artificial neural network modeling of osmotic dehydration mass transfer kinetics of potato. In: 18th National Congress on Food Science and Technology, 15–17 October 2008, Mashhad, Iran.

  • Cassano, A., Figoli, A., Tagarelli, A., Sindona, G., & Drioli, E. (2006). Integrated membrane process for the production of highly nutritional kiwifruit juice. Desalination, 189, 21–30.

    Article  CAS  Google Scholar 

  • Castleman, K. (1996). Digital image processing (p. 667). Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Chen, C. R., Ramaswamy, H. S., & Alli, I. (2001). Prediction of quality changes during osmo-convective drying of blueberries using neural network models for process optimization. Drying Technology, 19(3), 507–523.

    Article  Google Scholar 

  • El-Aouar, Â. A., Azoubel, P. M., & Murr, F. E. X. (2003). Drying kinetics of fresh and osmotically pre-treated papaya (Carica papaya L.). Journal of Food Engineering, 59, 85–91.

    Article  Google Scholar 

  • Fernández, L., Castillero, C., & Aguilera, J. M. (2005). An application of image analysis to dehydration of apple discs. Journal of Food Engineering, 67, 185–193.

    Article  Google Scholar 

  • Garcia, C. C., Mauro, M. A., & Kimura, M. (2007). Kinetics of osmotic dehydration and air-drying of pumpkins (Cucurbita moschata). Journal of Food Engineering, 82, 284–291.

    Article  Google Scholar 

  • Giangiacomo, R., Torreggiani, D., & Abbo, E. (1987). Osmotic dehydration of food. Part I. Sugar exchange between fruit and extracting syrup. Journal of Food Processing and Preservation, 11, 183–195.

    Article  CAS  Google Scholar 

  • Haykin, S. (1994). Neural network: A comprehensive foundation (pp. 22–24). Canada: Prentice Hall.

    Google Scholar 

  • Kashaninejad, M., Dehghani, A. A., & Kashiri, M. (2008). Modeling of wheat soaking using two artificial neural networks (MLP and RBF). Journal of Food Engineering, 91, 602–607.

    Article  Google Scholar 

  • León, K., Mery, D., Pedreschi, F., & León, J. (2006). Color measurement in L*a*b units from RGB digital images. Food Research International, 39, 1084–1091.

    Article  Google Scholar 

  • Menhaj, M. B. (1998). Fundamentals of neural networks. Tehran: Professor Hesabi.

    Google Scholar 

  • Mitra P, Barman PC & Chang KS (2009) Coumarin extraction from cuscuta reflexa using supercritical fluid carbon dioxide and development of an artificial neural network model to predict the coumarin yield. Food and Bioprocess Technology. doi: 10.1007/s11947-008-0179-2.

  • Mohebbi M, Akbarzadeh Totonchi MR, Shahidi F & Poorshehabi MR (2007) Possibility evaluation of machine vision and artificial neural network application to estimate dried shrimp moisture. In: 4th Iranian Conference on Machine Vision, Image Processing and Application, 14–15 February 2007, Mashhad, Iran.

  • Mohebbi, A., Taheri, M., & Soltani, A. (2008). A neural network for predicting saturated liquid density using genetic algorithm for pure and mixed refrigerants. International Journal of Refrigeration, 31, 1317–1327.

    Article  CAS  Google Scholar 

  • Movagharnejad, K., & Nikzad, M. (2007). Modeling of tomato drying using artificial neural network. Computers and Electronics in Agriculture, 59, 78–85.

    Article  Google Scholar 

  • Nieuwenhuijzen, N. H. V., Zareifard, M. R., & Ramaswamy, H. S. (2001). Osmotic drying kinetics of cylindrical apple slices of different sizes. Drying Technology, 19(3 & 4), 525–545.

    Article  Google Scholar 

  • Nisha, P., Singhal, R. S., & Pandit, A. B. (2004). A study on the degradation kinetics of visual green colour in spinach (Spinacea oleracea L.) and the effect of salt therein. Journal of Food Engineering, 64, 135–142.

    Article  Google Scholar 

  • Ochoa-Martínez, C. I., & Ayala-Apaonte, A. A. (2007). Prediction of mass transfer kinetics during osmotic dehydration of apples using neural networks. LWT, 40, 638–645.

    Article  Google Scholar 

  • Ochoa-Martínez, C. I., Ramaswamy, H. S., & Ayala-Aponte, A. A. (2007). ANN-based models for moisture diffusivity coefficient and moisture loss at equilibrium in osmotic dehydration process. Drying Technology, 25(5), 775–783.

    Article  Google Scholar 

  • Pedreschi, F., León, J., Mery, D., Moyano, P., Pedreschi, R., Kaack, K., et al. (2007). Color development and acrylamide content of pre-dried potato chips. Journal of Food Engineering, 79, 786–793.

    Article  CAS  Google Scholar 

  • Poligné, I., Broyart, B., Trystram, G., & Collignan, A. (2002). Prediction of mass-transfer kinetics and product quality changes during a dehydration–impregnation soaking process using artificial neural networks. Application to pork curing. Food Science and Technology-Lebensmittel-Wissenschaft & Technologie, 35, 748–756.

    Article  Google Scholar 

  • Quevedo, R.A., Aguilera, J.M., & Pedreschi, F. (2009) Color of salmon fillets by computer vision and sensory panel. Food and Bioprocess Technology. doi: 10.1007/s11947-008-0106-6.

  • Rastogi, N. K., & Niranjan, K. (1998). Enhanced mass transfer during osmotic dehydration of high pressure treated pineapple. Journal of Food Science, 63, 508–511.

    Article  CAS  Google Scholar 

  • Razavi, S. M. A., Mousavi, S. M., & Mortazavi, S. A. (2003). Dynamic prediction of milk ultrafiltration performance: A neural network approach. Chemical Engineering Science, 58, 4185–4195.

    Article  CAS  Google Scholar 

  • Riva, M., Compolongo, S., Leva, A. A., Maestrelli, A., & Torreggiani, D. (2005). Structure–property relationships in osmo-air-dehydrated apricot cubes. Food Research International, 38, 533–542.

    Article  Google Scholar 

  • Rodrigues, S., & Fernandes, F. A. N. (2007). Image analysis of osmotically dehydrated fruits: Melons dehydration in a ternary system. European Food Research and Technology, 225, 685–691.

    Article  CAS  Google Scholar 

  • Shafafi Zenoozian, M., Devahastin, S., Razavi, M. A., Shahidi, F., & Poreza, H. R. (2008). Use of artificial neural network and image analysis to predict physical properties of osmotically dehydrated pumpkin. Drying Technology, 26(1), 132–144.

    Article  Google Scholar 

  • Shi, J., Pan, Z., McHugh, T. H., & Hirschberg, E. (2009). Effect of infusion method and parameters on solid gain in blueberries. Food and Bioprocess Technology, 2, 271–278. doi:10.1007/s11947-008-0116-4.

    Article  Google Scholar 

  • Spiazzi, E., & Mascheroni, R. (1997). Mass transfer model for osmotic dehydration of fruits and vegetables. I. Development of the simulation model. Journal of Food Engineering, 34, 387–410.

    Article  Google Scholar 

  • Sun, D-W. (ed). (2005). Emerging Technologies for Food Processing. London: Academic.

    Google Scholar 

  • Therdthai, N., & Zhou, W. (2009). Characterization of microwave vacuum drying and hot air drying of mint leaves (Mentha cordifolia Opiz ex Fresen). Journal of Food Engineering, 91, 482–489.

    Article  Google Scholar 

  • Tijskens, L. M. M., Schijvens, E. P. H. M., & Biekman, E. S. A. (2001). Modelling the change in colour of broccoli and green beans during blanching. Innovative Food Science and Emerging Technologies, 2, 303–313.

    Article  Google Scholar 

  • Vinod, K. J., & Vikrant, C. (2002). Neural networks approach to modeling food processing operations. In J. M. Irudayaraj (Ed.), Food processing operations modeling: Design and analysis (pp. 1–3). New York: Marcel Dekker.

    Google Scholar 

Download references

Acknowledgment

The authors are thankful to Mr. Ghazvini for his assistance during the experiment works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohebbat Mohebbi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fathi, M., Mohebbi, M. & Razavi, S.M.A. Application of Image Analysis and Artificial Neural Network to Predict Mass Transfer Kinetics and Color Changes of Osmotically Dehydrated Kiwifruit. Food Bioprocess Technol 4, 1357–1366 (2011). https://doi.org/10.1007/s11947-009-0222-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-009-0222-y

Keywords

Navigation