Skip to main content
Log in

A Comparison of Conventional and Radio Frequency Thawing of Beef Meats: Effects on Product Temperature Distribution

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This study examined the use of pilot-scale radio frequency (RF) heating for thawing beef meat blends (lean, 50:50 lean/fat and fat). The aim was to thaw blocks (4 kg) to within a target temperature range of −1 to +5°C. Post-thawing temperature distribution in the blocks was compared to that of blocks thawed by conventional air thawing. The optimum RF conditions for thawing lean meat was 35 min of RF heating delivered in a noncontinuous fashion (20 min on, 10 min off, and followed by 15 min on) at 400 W, which gave a mean temperature of 0.2°C (SD 1.8). By comparison, conventional thawing was achieved in 50 h 20 min which represented an 85-fold difference in thawing time. Comparable uniformity of temperature distribution was obtained by each method. For the lean/fat mixture and 100% fat, the target range could not be achieved due to problems of runaway heating. The latter phenomenon relates to the manner in which the absorbed energy is transferred throughout the material as influenced by the thermophysical properties of the product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anonymous M. C. (1992). Thawing frozen poultry. In: Dielectric Heating for Industrial processes (pp. 110-113). UIE Tour Atlantique, Codex 06, Paris.

  • AOAC. (1995). In: P. Cunniff (Ed.) Official methods of analysis of AOAC International 16 th Edition. Arlington, Va, Association of Official Analytical Chemists.

  • Bailey, C., James, S. J., Kitchell, A. G., & Hudson, W. R. (1974). Air, water, and vacuum-thawing of frozen pork legs. J Sci Food Agric, 25, 81–97. doi:10.1002/jsfa.2740250110.

    Article  CAS  Google Scholar 

  • Bengtsson, N. (1963). Electronic defrosting of meat and fish at 35 and 2450 MHz—a laboratory comparison. Food Technol, 17(10), 1309–1312.

    Google Scholar 

  • Bengtsson, N. E., Melin, J., Remi, K., & Söderlind, S. (1963). Measurements of the dielectric properties of frozen and defrosted meat and fish in the frequency range 10–200 MHz. J Sci Food Agric, 14, 592–604. doi:10.1002/jsfa.2740140812.

    Article  Google Scholar 

  • Brunton, N. P., Lyng, J. G., Li, W., Cronin, D. A., Morgan, D., & McKenna, B. (2005). Effect of radio frequency (RF) heating on the texture, colour and sensory properties of a comminuted meat product. Food Res Int, 38, 337–344. doi:10.1016/j.foodres.2004.06.016.

    Article  Google Scholar 

  • Buffler CH. (1993). Dielectric properties of foods and microwave materials. In: Microwave cooking and processing (pp. 46–69). New York, USA: Van Nostrand Reinhold.

  • Cathcart, W. H., & Parker, J. J. (1946). Defrosting frozen foods by high-frequency heat. Food Res, 11, 341–344.

    CAS  Google Scholar 

  • Decareau, R. V. (1985). Microwaves in the food processing industry. New York. NY: Academic.

    Google Scholar 

  • Farag, K. W., Lyng, J. G., Morgan, D. J., & Cronin, D. A. (2008a). A comparison of conventional and radio frequency tempering of beef meats: Effects on product temperature distribution. Meat Sci, 80, 488–495. doi:10.1016/j.meatsci.2008.01.015.

    Article  Google Scholar 

  • Farag, K. W., Lyng, J. G., Morgan, D. J., & Cronin, D. A. (2008b). Dielectric and thermophysical properties of different meat beef blends over a temperature range of −18 to +10°C. Meat Sci, 79, 740–747. doi:10.1016/j.meatsci.2007.11.005.

    Article  Google Scholar 

  • Farag KW, Marra F, Lyng JG, Morgan DJ, Cronin DA. Temperature changes and power consumption during radio frequency tempering of beef lean/fat formulations. Food Bioprocess Technol. 2009. doi:10.1007/s11947-008-0131-5.

  • Holland, J. M. (1974). Dielectric post baking in biscuit making. Bak Ind J, 6(8), 169–176.

    Google Scholar 

  • Houben, J., Schoenmakers, L., van Putten, E., van Roon, P., & Krol, B. (1991). Radio frequency pasteurization of sausage emulsions as a continuous process. J Microw Power Electromagn Energy, 26(4), 202–205.

    Google Scholar 

  • James, S. J., & Creed, P. G. (1980). Predicting thawing time of frozen beef fore and hindquarters. Int J Refrigeration, 3(4), 237–240. doi:10.1016/0140-7007(80)90054-7.

    Article  Google Scholar 

  • James S.J., James C. (2002). Thawing and tempering. In: Meat Refrigeration (pp. 159–187). Cambridge, UK: Woodhead Publishing.

  • Jamieson, L., & Williamson, P. (1999). The potential of electro-technologies for the processing of foods. Food Sci Technol Today, 13(2), 97–101.

    Google Scholar 

  • Jason, A. C., & Sanders, H. R. (1962). Dielectric thawing of fish. Food Technol, 16(6), 101–112.

    Google Scholar 

  • Jones, P. L. (1992). Dielectric heating for food processing. Nutr Food Sci, 2, 14–15. doi:10.1108/EUM0000000000951.

    Article  Google Scholar 

  • Laycock, L., Piyasena, P., & Mittal, G. S. (2003). Radio frequency cooking of ground, comminuted and muscle meat products. Meat Sci, 65(3), 959–965. doi:10.1016/S0309-1740(02)00311-X.

    Article  Google Scholar 

  • Mascheroni, R. H., & Calvelo, A. (1980). Relationship between heat transfer parameters and the characteristic damage variables for the freezing of beef. Meat Sci, 4(4), 267–285. doi:10.1016/0309-1740(80)90027-3.

    Article  Google Scholar 

  • Mermelstein, N. H. (1998). Microwave and radio frequency drying. Food Technol, 52(11), 84–86.

    Google Scholar 

  • Moyer, J. C., & Stotz, E. (1947). The blanching of vegetables by electronics. Food Technol, 1(2), 252–257.

    Google Scholar 

  • Mudgett, R. E., Mudgett, D. R., Goldblith, S. A., Wang, D. I. C., & Westphal, W. B. (1979). Dielectric properties of frozen meats. J Microw Power Electromagn Energy, 14(3), 209–216.

    Google Scholar 

  • Okamoto, A., & Suzuki, A. (2002). Effects of high hydrostatic pressure thawing on pork meat. In R. Hayashi (Ed.), Trends in high pressure bioscience and biotechnology, Volume 19 (Progress in Biotechnology), pp. 571–576. Amsterdam, The Netherlands: Elsevier Science B.V.

    Google Scholar 

  • Piyasena, P., Dussault, C., Koutchma, T., Ramaswamy, H. S., & Awuah, G. B. (2003). Radio frequency heating of foods: principles, applications and related properties—A review. Crit Rev Food Sci Nutr, 43(6), 587–606. doi:10.1080/10408690390251129.

    Article  Google Scholar 

  • Pizza, A., Pedrielli, R., Busetto, M., Bocchi, M., & Spinelli, R. (1997). Use of radiofrequencies in the meat processing industry. Effects on the quality characteristics of meat and cooked meat products. Industria Conserve, 72, 122–133.

    Google Scholar 

  • Ryynänen, S. (1995). The electromagnetic properties of food materials: a review of the basic principles. J Food Eng, 26, 409–429. doi:10.1016/0260-8774(94)00063-F.

    Article  Google Scholar 

  • Sanders, H. R. (1966). Dielectric thawing of meat and meat products. J Food Technol, 1, 183–192.

    Article  Google Scholar 

  • Swain, M., & James, S. (2005). Thawing and tempering using microwave processing. In H. Schubert & M. Regier (Eds.), The Microwave Processing of Foods, pp. 175–191. Abington Hall, Abington, Cambridge, CB21 6AH, England: Woodhead Publishing Limited.

    Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support of the Non-Commissioned Food Institutional Research Measure (FIRM), directed by the Irish Department of Agriculture, Fisheries and Food.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Lyng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farag, K.W., Lyng, J.G., Morgan, D.J. et al. A Comparison of Conventional and Radio Frequency Thawing of Beef Meats: Effects on Product Temperature Distribution. Food Bioprocess Technol 4, 1128–1136 (2011). https://doi.org/10.1007/s11947-009-0205-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-009-0205-z

Keywords

Navigation