Skip to main content
Log in

Temperature Changes and Power Consumption During Radio Frequency Tempering of Beef Lean/Fat Formulations

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

A numerical analysis of three block-shaped beef blends (lean, fat, and 50:50 lean/fat mixture), tempered using radio-frequency (RF) heating is presented. Post tempering temperature distribution indicated a minor temperature gradient within the blocks, suggesting a relatively uniform temperature distribution. The heating rate of the three blends decreased as tempering time progressed with the highest rates being observed in the leanest blends. Power absorption (P abs) for the lean and 50:50 mixture increased as tempering time increased but the high fat blend showed an initial increase before plateauing and then declining slightly. While intrinsic power efficiency was found to be satisfactory, overall power efficiency, evaluated on the basis of consumed power, was 50%, though it is important to emphasize the system was not fully optimized. Leaner blends and higher power treatments produced the most efficient RF tempering process. This data is of potential value to meat industry in the context of rapid defrosting of meat products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

C p :

specific heat (kJ kg−1 °C−1)

E rms :

root mean square of the electric field (V m−1)

f :

frequency (Hz)

IP efficiency :

intrinsic power efficiency (%)

k :

thermal conductivity (W m−1 °C−1)

MnT :

minimum temperature (°C)

MxT :

maximum temperature (°C)

NP s :

nominal power set (W)

P abs :

average absorbed power (W)

P efficiency :

power efficiency (%)

P s :

power supplied to the RF generator (W)

Q GEN :

power generated by electric field distribution per unit of volume (W m−3)

t :

time (s)

T :

sample temperature (°C)

ΔT :

temperature difference between MxT and MnT (°C)

ΔT/Δt :

heating rate (°C/s)

V sample :

sample volume (m3)

\(\overline{x} T\) :

average temperature (°C)

ε 0 :

free space permittivity (F m−1)

ε′:

relative dielectric constant (−)

ε″:

relative dielectric loss factor (−)

ρ :

density (kg m−3)

References

  • Baehr, H. D., & Stephan, D. (1998). Heat and Mass Transfer. Berlin, Germany: Springer.

  • Bengtsson, N. E. (1963). Electronic defrosting of meat and fish at 35 and 2450 MHz—a laboratory comparison. Food Technology, 17(10), 1309–1312.

    Google Scholar 

  • Bengtsson, N. E., Melin, J., Remi, K., & Söderlind, S. (1963). Measurements of the dielectric properties of frozen and defrosted meat and fish in the frequency range 10–200 MHz. Journal of the Science of Food and Agriculture, 14, 592–604. doi:10.1002/jsfa.2740140812.

    Article  Google Scholar 

  • Boyaci, I. H., Sumnu, G., & Sakiyan, O. (2008). Estimation of dielectric properties of cakes based on porosity, moisture content, and formulations using statistical methods and artificial neural networks. Food and Bioprocess Technology (in press). doi:10.1007/s11947-008-0064-z.

  • Buffler, C. H. (1993). Microwave cooking and processing. New York, USA: Van Nostrand Reinhold.

  • Cathcart, W. H., & Parker, J. J. (1946). Defrosting frozen foods by highfrequency heat. Food Research, 11, 341–344.

    CAS  Google Scholar 

  • Clark, D. E., Folz, D. C., & West, J. K. (2000). Processing materials with microwave energy. Materials Science & Engineering. A, 287, 153–158. doi:10.1016/S0921-5093(00)00768-1.

    Article  Google Scholar 

  • Delgado, A. E., & Sun, D. W. (2001). Heat and mass transfer models for predicting freezing process—a review. Journal of Food Engineering, 47(3), 157–174. doi:10.1016/S0260-8774(00)00112-6.

    Article  Google Scholar 

  • Delgado, A. E., Zheng, L., & Sun, D. W. (2008). Influence of ultrasound on freezing rate of immersion-frozen apples. Food and Bioprocess Technology (in press). doi:10.1007/s11947-008-0111-9.

  • Farag, K., Lyng, J. G., Morgan, D. J., & Cronin, D. A. (2008a). Dielectric and thermophysical properties of different beef meat blends over a temperature range of −18 to +10°C. Meat Science, 79, 740–747. doi:10.1016/j.meatsci.2007.11.005.

    Article  Google Scholar 

  • Farag, K., Lyng, J. G., Morgan, D. J., & Cronin, D. A. (2008b). A comparison of conventional and radio frequency tempering of beef meats: effects on product temperature distribution. Meat Science (in press). doi:10.1016/j.meatsci.2008.01.015.

  • Houben, J., Schoenmakers, L., van Putten, E., van Roon, P., & Krol, B. (1991). Radio-frequency pasteurization of sausage emulsions as a continuous process. Journal of Microwave Power and Electromagnetic Energy, 26(4), 202–205.

    Google Scholar 

  • Jason, A. C., & Sanders, H. R. (1962a). Dielectric thawing of fish. I. Experiments with frozen herrings. Food Technology, 16(6), 101–106.

    Google Scholar 

  • Jason, A. C., & Sanders, H. R. (1962b). Dielectric thawing of fish. II. Experiments with frozen white fish. Food Technology, 16(6), 107–112.

    Google Scholar 

  • Khraisheh, M. A. M., Cooper, T. J. R., & Magee, T. R. A. (1997). Microwave and air drying I. Fundamental considerations and assumptions for the simplified thermal calculations of volumetric power absorption. Journal of Food Engineering, 33(1–2), 207–219. doi:10.1016/S0260-8774(97)00050-2.

    Article  Google Scholar 

  • Mermelstein, N. H. (1998). Microwave and radiofrequency drying. Food Technology, 52(11), 84–86.

    Google Scholar 

  • Moyer, J. C., & Stotz, E. (1947). The blanching of vegetables by electronics. Food Technology, 1, 252–257.

    Google Scholar 

  • Nelson, S. O., & Datta, A. K. (2001). Dielectric properties of food materials and electric field interactions. In A. K. Datta, & R. C. Anantheswaran (Eds.), Handbook of microwave technology for food applications (pp. 69–114). New York, USA: Dekker.

    Google Scholar 

  • Pizza, A., Pedrielli, R., Busetto, M., Bocchi, M., & Spinelli, R. (1997). Use of radiofrequencies in the meat processing industry. Effects on the quality characteristics of meat and cooked meat products. Industria Conserve, 72, 122–133.

    Google Scholar 

  • Romano, V., & Marra, F. (2008). A numerical analysis of radio frequency heating of regular shaped food stuff. Journal of Food Engineering, 84, 449–457. doi:10.1016/j.jfoodeng.2007.06.006.

    Article  Google Scholar 

  • Rowley, A. T. (2001). Radio frequency heating. In P. Richardson (Ed.), Thermal technologies in food processing (pp. 162–177). Cambridge, UK: Woodhead Publishing.

    Google Scholar 

  • Ryynänen, S. (1995). The electromagnetic properties of food materials: a review of the basic principles. Journal of Food Engineering, 26(4), 409–429. doi:10.1016/0260-8774(94)00063-F.

    Article  Google Scholar 

  • Sanders, H. R. (1966). Dielectric thawing of meat and meat products. Journal of Food Engineering, 1, 183–192.

    Google Scholar 

  • Zhao, Y., Flugstad, B., Kolbe, E., Park, J. W., & Wells, J. H. (2000). Using capacitive (radio frequency) dielectric heating in food processing and preservation—a review. Journal of Food Process Engineering, 23, 25–55. doi:10.1111/j.1745-4530.2000.tb00502.x.

    Article  Google Scholar 

  • Zhang, L., Lyng, J. G., & Brunton, N. P. (2004). Effect of radio frequency cooking on the texture, colour and sensory properties of a large diameter comminuted meat product. Meat Science, 68(2), 257–268. doi:10.1016/j.meatsci.2004.03.011.

    Article  Google Scholar 

Download references

Acknowledgment

The authors wish to acknowledge the financial support of the Non-Commissioned Food Institutional Research Measure, directed by the Irish Department of Agriculture Fisheries and Food.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Marra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farag, K.W., Marra, F., Lyng, J.G. et al. Temperature Changes and Power Consumption During Radio Frequency Tempering of Beef Lean/Fat Formulations. Food Bioprocess Technol 3, 732–740 (2010). https://doi.org/10.1007/s11947-008-0131-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-008-0131-5

Keywords

Navigation