Skip to main content
Log in

Predicting Stability of Distiller’s Wet Grains (DWG) with Color Analysis

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Distiller’s wet grain (DWG) is one of the coproducts from the fuel ethanol industry. Although many studies have investigated the nutritional properties of DWG, little work has investigated the storability and shelf life for these feed products or how to measure these quantities. The objectives of this research were to measure the development of microorganisms and their respiration over time in freshly produced DWG and to determine if there was a quantitative relationship between these microbiological parameters and a more easily measured physical property, DWG color. The numbers of aerobic heterotrophic bacteria, molds and yeasts, and carbon dioxide generated by microbial respiration were measured at t = 0, 1, 2, 4, and 7 days as were Hunter color (L, a, b) values. All of the microbial parameters increased significantly over time (p < 0.05). Hunter L and a values appeared to change over time as well, but these differences became significant only at t = 7 days; at this time period, Hunter b changed significantly also. Hunter a and b values were negatively correlated with aerobic heterotroph numbers (r = −0.74 for Hunter a; r = −0.77 for Hunter b), yeast and mold counts (r = −0.78 for Hunter a; r = −0.81 for Hunter b), and CO2 production (r = −0.89 for Hunter a; r = −0.87 for Hunter b). Hunter L values had moderate positive correlations with the microbial parameters (r values ranged from 0.42 to 0.57). Using Hunter a and b color parameters as predictor variables, multiple linear and nonlinear regressions produced R 2 values of 0.751, 0.665, and 0.816 for aerobic heterotrophs, molds and yeasts, and CO2 generation, respectively. Additional research should quantify spoilage criteria, the relationship to palatability, and determine how best to use color changes as indicators of each.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • AACC (2000). Approved methods of the American association of cereal chemists (10th ed.). St. Paul, MN: American Association of Cereal Chemists.

    Google Scholar 

  • Al-Suwaiegh, S., Fanning, K. C., Grant, R. J., Milton, C. T., & Klopfenstein, T. J. (2002). Utilization of distillers grains from the fermentation of sorghum or corn in diets for finishing beef and lactating dairy cattle. Journal of Animal Science, 80, 1105–1111.

    CAS  Google Scholar 

  • AOAC (2003). Official methods of analysis of AOAC international (17th ed.). Gaithersburg, MA: AOAC International.

    Google Scholar 

  • ASAE (2004). S352.2: Moisture measurement—grains and seeds. ASAE standards (51th ed.). St. Joseph, MI: ASAE.

    Google Scholar 

  • Ashbell, G., Weinberg, Z. G., Hen, Y., & Filya, I. (2002). The effects of temperature on the aerobic stability of wheat and corn silages. Journal of Industrial Microbiology and Biotechnology, 28, 261–263.

    Article  CAS  Google Scholar 

  • Baghe-Khandan, M., Choi, S. Y., & Okos, M. R. (1981). Improved line heat source thermal conductivity probe. Journal of Food Science, 46(5), 1430–1432.

    Article  Google Scholar 

  • BBI (2008). Plant list. Grand Forks, ND: BBI International Available at: http://www.ethanolproducer.com/plant-list.jsp. Accessed 04 March 2008.

    Google Scholar 

  • Beauchat, L. R. (1981). Microbial stability as affected by water activity. Cereal Foods World, 26, 345–349.

    Google Scholar 

  • Belyea, R. L., Eckhoff, S., Wallig, M., & Tumbleson, M. E. (1998). Variability in the nutritional quality of distillers solubles. Bioresource Technology, 66, 207–212.

    Article  CAS  Google Scholar 

  • Belyea, R. L., Rausch, K. D., & Tumbleson, M. E. (2004). Composition of corn and distillers dried grains with solubles from dry grind ethanol processing. Bioresource Technology, 94, 293–298.

    Article  CAS  Google Scholar 

  • Birkelo, C. P., Brouk, M. J., & Schingoethe, D. J. (2004). The energy content of wet corn distillers grains for lactating dairy cows. Journal of Dairy Science, 87, 1815–1819.

    Article  CAS  Google Scholar 

  • Chiou, P. W. S., Chang, S. H., Chiang, J. K., Yu, B., & Chen, C. R. (1999). Studies on the use of wet sorghum distiller’s grains in lactating cows. Asian-Australasian Journal of Animal Sciences, 12(6), 895–900.

    Google Scholar 

  • Dien, B. S., Bothast, R. J., Nichols, N. N., & Cotta, M. A. (2003). The U.S. corn ethanol industry: An overview of current technology and future prospects. In The third international starch technology conference-coproducts program proceedings (pp. 10–21). University of Illinois.

  • Garcia, A. D., & Kalscheur, K. F. (2006). Ensiling wet distillers grains with other feeds. Extension extra 4029. Brookings, SD: South Dakota State University.

    Google Scholar 

  • Ham, G. A., Stock, R. A., Klopfenstein, T. J., Larson, E. M., Shain, D. H., & Huffman, R. P. (1994). Wet corn distillers byproducts compared with dried corn distillers grains with solubles as a source of protein and energy for ruminants. Journal of Animal Science, 72, 3246–3257.

    CAS  Google Scholar 

  • Hunter Associates Laboratory (2002). Universal software user’s manual (Version 2.5). Reston, VA: Hunter Associates Laboratory.

    Google Scholar 

  • Jaques, K. A., Lyons, T. P., & Kelsall, D. R. (2003). The alcohol textbook. Nottingham, UK: Nottingham University Press.

    Google Scholar 

  • Klopfenstein, T. (1996). Distillers grains as an energy source and effect of drying on protein quality. Animal Feed Science and Technology, 60, 201–207.

    Article  Google Scholar 

  • Koch, A. L. (1994). Growth measurement. In P. Gerhardt, R. Murray, W. Wood, & N. Krieg (Eds.), Methods for general and molecular bacteriology (pp. 248–277). Washington, D.C.: American Society for Microbiology.

    Google Scholar 

  • Larson, E. M., Stock, R. A., Klopfenstein, T. J., Sindt, M. H., & Huffman, R. P. (1993). Feeding value of wet distillers byproducts for finishing ruminants. Journal of Animal Science, 71, 2228–2236.

    CAS  Google Scholar 

  • Lehman, R. M., & Rosentrater, K. A. (2007). Microbial development in distillers wet grains produced during fuel ethanol production from corn (Zea mays). Canadian Journal of Microbiology, 53, 1046–1052.

    Article  CAS  Google Scholar 

  • Lodge, S. L., Stock, R. A., Klopfenstein, T. J., Shain, D. H., & Herold, D. W. (1997). Evaluation of corn and sorghum distillers byproducts. Journal of Animal Science, 75, 37–43.

    CAS  Google Scholar 

  • Mills, A. L., & Bell, P. (1986). Determination of individual organisms and their activities in situ. In R. Tate (Ed.), Microbial autecology: A method for environmental studies (pp. 27–60). New York: John Wiley & Sons, Inc.

    Google Scholar 

  • Mustafa, A. F., McKinnon, J. J., & Christensen, D. A. (2000). The nutritive value of thin stillage and wet distillers’ grains for ruminants: review. Asian-Australasian Journal of Animal Sciences, 13(11), 1609–1618.

    Google Scholar 

  • Nofsinger, G. W., VanCauwenberge, J. E., Bothast, R. J., & Kwolek, W. F. (1983). An evaluation of chemical methods to extend the allowable storage time of wet distillers’ grains. Journal of Agricultural Food Chemistry, 31, 276–279.

    Article  CAS  Google Scholar 

  • Ojowi, M., McKinnon, J. J., Mustafa, A. F., & Christensen, D. A. (1997). Evaluation of wheat-based wet distillers’ grains for feedlot cattle. Canadian Journal of Animal Science, 77(3), 447–454.

    Google Scholar 

  • Pedersen, C., Jonsson, H., Lindberg, J. E., & Roos, S. (2004). Microbiological characterization of wet wheat distillers’ grain, with focus on isolation of Lactobacilli with potential as probiotics. Applied Environmental Microbiology, 70, 1522–1527.

    Article  CAS  Google Scholar 

  • Pedersen, C., Roos, S., Jonsson, H., & Lindberg, J. E. (2005). Performance, feeding behavior and microbial diversity in weaned piglets fed liquid diets based on water or wet wheat-distillers grain. Archives in Animal Nutrition, 59(3), 165–179.

    Article  Google Scholar 

  • RFA (2008). Ethanol biorefinery locations—U.S. fuel ethanol industry biorefineries and production capacity. Washington, D.C.: Renewable Fuels Association. Available at: http://www.ethanolrfa.org/. Accessed 04 March 2008.

    Google Scholar 

  • Rosentrater, K. A. (2006). Some physical properties of distillers dried grains with solubles (DDGS). Applied Engineering in Agriculture, 22(4), 589–595.

    Google Scholar 

  • Rosentrater, K. A., & Lehman, R. M. (2008). Physical and chemical properties of corn distillers wet grains. Applied Engineering in Agriculture, 24(1), 57–62.

    Google Scholar 

  • Rosentrater, K. A., & Muthukumarappan, K. (2006). Corn ethanol coproducts: generation, properties, and future prospects. International Sugar Journal, 108(1295), 648–657.

    CAS  Google Scholar 

  • Schingoethe, D. J., Brouk, M. J., & Birkelo, C. P. (1999). Milk production and composition from cows fed wet corn distillers grains. Journal of Dairy Science, 82, 574–580.

    CAS  Google Scholar 

  • Schingoethe, D. J., Kalscheur, K. F., & Garcia, A. D. (2002). Distillers grains for dairy cattle. Extension extra 4022. Brookings, SD: South Dakota State University.

    Google Scholar 

  • Shand, P. J., McKinnon, J. J., & Christensen, D. A. (1998). Eating quality of beef from animals fed wet brewers’ grains and wheat-based wet distillers’ grains. Canadian Journal of Animal Science, 78(1), 143–146.

    Google Scholar 

  • Shurson, G. C., Spiehs, M. J., & Whitney, M. (2004). The use of maize distiller’s dried grains with solubles in pig diets. Pig News and Information, 25(2), 75N–83N.

    Google Scholar 

  • Sokal, R. R., & Rohlf, F. J. (1995). Biometry—the principles and practice of statistics in biological research (3rd ed.). New York, NY: WH Freemand & Company.

    Google Scholar 

  • Speigel, M. R. (1994). Statistics. New York, NY: McGraw-Hill Inc.

    Google Scholar 

  • Spiehs, M. J., Whitney, M. H., & Shurson, G. C. (2002). Nutrient database for distiller’s dried grains with solubles produced from new ethanol plants in Minnesota and South Dakota. Journal of Animal Science, 80, 2639–2645.

    CAS  Google Scholar 

  • Tibelius, C. (1996). Coproducts and near coproducts of fuel ethanol fermentation from grain. Agriculture and Agri-Food Canada–Canadian Green Plan Ethanol Program: Starchy Waste Streams Evaluation Project. Available at: http://res2.agr.ca/publications/cfar/index_e.htm. Accessed 10 January 2007.

  • Tjardes, K., & Wright, C. (2002). Feeding corn distiller’s co-products to beef cattle. Extension extra 2036. Brookings, SD: South Dakota State University.

    Google Scholar 

  • Tournas, V., Stack, M. E., Mislivec, P. B., Koch, H. A., & Bandler, R. (2001). Yeasts, molds, and mycotoxins. In Bacteriological analytical manual (8th ed., Revision A, pp. 14–17). Washington, D.C.: U.S. Food and Drug Administration.

  • Weigel, J. C., Loy, D., & Kilmer, L. (1997). Feed co-products of the dry corn milling process. Iowa State University, Iowa Corn Promotion Board, Iowa Department of Agriculture, Renewable Fuels Association, National Corn Growers Association. Available at: http://www.iowacorn.org/ethanol/ethanol_17.html. Accessed 10 January 2007.

  • Zar, J. H. (1996). Biostatistical analysis (3rd ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

Download references

Acknowledgements

We thank the collaborating ethanol processing plant for access to their facility and for samples for our experiment. We gratefully acknowledge technical assistance from Jenna Carsrud, Vanessa Cheesbrough, Amy Christie, and Kendra Jensen. And, we thank Theron Cooper for many insightful discussions regarding distiller’s grains.

Disclaimer

Mention of a trade name, propriety product, or specific equipment does not constitute a guarantee or warranty by the United States Department of Agriculture and does not imply approval of a product to the exclusion of others that may be suitable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Rosentrater.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosentrater, K.A., Lehman, R.M. Predicting Stability of Distiller’s Wet Grains (DWG) with Color Analysis. Food Bioprocess Technol 3, 204–212 (2010). https://doi.org/10.1007/s11947-008-0090-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-008-0090-x

Keywords

Navigation