Skip to main content

Advertisement

Log in

Therapy for Insomnia and Circadian Rhythm Disorder in Alzheimer Disease

  • Sleep Disorders (A Iranzo, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Abstract

Purpose of the review

There is strong evidence for a bidirectional association between sleep disorders and Alzheimer’s disease (AD). In particular, insomnia may be a potentially modifiable risk factor for AD. The present review summarizes recent advances in treatment of sleep disorders in AD.

Recent findings

Some studies investigated the efficacy and safety of hypnotic agents as ramelteon and mirtazapine to treat sleep disorders in AD but no significant therapeutic effects have been observed. Benzodiazepines are the most frequently used medication for treatment of insomnia but they may cause significant side effects in old subjects. Suvorexant, an orexin receptor antagonist, showed a positive effect on AD insomnia. Recent report suggests an association between trazodone use and delayed cognitive decline in AD. With respect to circadian rhythm disorders, non-pharmacological treatments, especially bright light therapy, could be useful and safe options for treatment in AD.

Summary

Some pharmacological and non-pharmacological treatments might have benefits in AD patients with sleep disturbances, but further well-designed controlled trials are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer’s disease. Lancet. 2011;377(9770):1019–31.

    PubMed  Google Scholar 

  2. Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014;13(6):614–29.

    PubMed  Google Scholar 

  3. Winsky-Sommerer R, de Oliveira P, Loomis S, Wafford K, Dijk DJ, Gilmour G. Disturbances of sleep quality, timing and structure and their relationship with other neuropsychiatric symptoms in Alzheimer’s disease and schizophrenia: insights from studies in patient populations and animal models. Neurosci Biobehav Rev. 2019;97:112–37.

    PubMed  Google Scholar 

  4. Shi L, Chen SJ, Ma MY, Bao YP, Han Y, Wang YM, et al. Sleep disturbances increase the risk of dementia: a systematic review and meta-analysis. Sleep Med Rev. 2018;40:4–16.

    PubMed  Google Scholar 

  5. •• Ju YS, Ooms SJ, Sutphen C, Macauley SL, Zangrilli MA, Jerome G, et al. Slow wave sleep disruption increases cerebrospinal fluid amyloid-β levels. Brain. 2017;140(8):2104–11. This work experimentally demonstrates that slow wave activity disruption increases amyloid-β levels.

    PubMed  PubMed Central  Google Scholar 

  6. •• Mander BA, Marks SM, Vogel JW, Rao V, Lu B, Saletin JM, et al. β-Amyloid disrupts human NREM slow waves and related hippocampus-dependent memory consolidation. Nat Neurosci. 2015;18(7):1051–7. This work describes how sleep disruption is able to influence hippocampus-dependent cognitive deterioration throughout β-amyloid pathology in the elderly.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. • Pase MP, Himali JJ, Grima NA, Beiser AS, Satizabal CL, et al. Sleep architecture and the risk of incident dementia in the community. Neurology. 2017;89(12):1244–50. This study identifies REM sleep as a predictor of the onset of clinical dementia.

    PubMed  PubMed Central  Google Scholar 

  8. de Oliveira FF, Bertolucci PH, Chen ES, Smith MA. Assessment of sleep satisfaction in patients with dementia due to Alzheimer’s disease. J Clin Neurosci. 2014;21(12):2112–27.

    PubMed  Google Scholar 

  9. Peter-Derex L, Yammine P, Bastuji H, Croisile B. Sleep and Alzheimer’s disease. Sleep Med Rev. 2015;19:29–38.

    PubMed  Google Scholar 

  10. Most EI, Aboudan S, Scheltens P, Van Someren EJ. Discrepancy between subjective and objective sleep disturbances in early- and moderate-stage Alzheimer disease. Am J Geriatr Psychiatry. 2012;20(6):460–7.

    PubMed  Google Scholar 

  11. Lauriola M, Esposito R, Delli Pizzi S, de Zambotti M, Londrillo F, et al. Sleep changes without medial temporal lobe or brain cortical changes in community-dwelling individuals with subjective cognitive decline. Alzheimers Dement. 2017;13(7):783–91.

    PubMed  Google Scholar 

  12. De Gennaro L, Gorgoni M, Reda F, Lauri G, Truglia I, Cordone S,et al., The fall of sleep K-complex in Alzheimer disease. Sci Rep. 2017; 7:39688. This study underlines the role of K-complex density in differentiating between AD patients and healthy individuals.

  13. Volicer L, Harper DG, Manning BC, Goldstein R, Satlin A. Sundowning and circadian rhythms in Alzheimer’s disease. Am J Psychiatry. 2001;158:704–11.

    CAS  PubMed  Google Scholar 

  14. Leng Y, Musiek ES, Hu K, Cappuccio FP, Yaffe K. Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol. 2019;18(3):307–18.

    PubMed  PubMed Central  Google Scholar 

  15. Stopa EG, Volicer L, Kuo-Leblanc V, Harper D, Lathi D, Tate B, et al. Pathologic evaluation of the human suprachiasmatic nucleus in severe dementia. J Neuropathol Exp Neurol. 1999;58:29–39.

    CAS  PubMed  Google Scholar 

  16. Lin L, Huang QX, Yang SS, Chu J, Wang JZ, Tian Q. Melatonin in Alzheimer’s disease. Int J Mol Sci. 2013;14(7):14575–93.

    PubMed  PubMed Central  Google Scholar 

  17. Balmik AA, Chinnathambi S. Multi-faceted role of melatonin in neuroprotection and amelioration of tau aggregates in Alzheimer’s disease. J Alzheimers Dis. 2018;62(4):1481–93.

    CAS  PubMed  Google Scholar 

  18. • McCleery J, Cohen DA, Sharpley AL. Pharmacotherapies for sleep disturbances in Alzheimer's disease. Cochrane Database Syst Rev. 2014;3:CD009178. This review critically discusses the existing literature on the pharmacological strategies to treat sleep disorders in Alzheimer disease.

    Google Scholar 

  19. Scoralick FM, Louzada LL, Quintas JL, Naves JO, Camargos EF, Nobrega OT. Mirtazapine does not improve sleep disorders in Alzheimer’s disease: results from a double-blind, placebo-controlled pilot study. Psychogeriatrics. 2017;17:89–96.

    PubMed  Google Scholar 

  20. • Hamuro A, Honda M, Wakaura Y. Suvorexant for the treatment of insomnia in patients with Alzheimer’s disease. Aust N Z J psychiatry. 2018;52(2):207–8. This study shows the adequate efficacy of suvorexant in the treatment of insomnia in Alzheimer disease with improvement of cognitive performance.

    PubMed  Google Scholar 

  21. •• La AL, Walsh CM, Neylan TC, Vossel KA, Yaffe K, et al. Long-Term trazodone use and cognition: a potential therapeutic role for slow-wave sleep enhancers. J Alzheimers Dis. 2019;67:911–21. This study demonstrates, for the first time, the potential beneficial effects of long-term trazodone use on sleep parameters and decline in cognition.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. de Billioti Gage S, Bégaud B, Bazin F, Verdoux H, Dartigues JF, Pérès K, et al. Benzodiazepine use and risk of dementia: prospective population based study. BMJ. 2012;345:e6231.

    Google Scholar 

  23. Lee J, Jung SJ, Choi JW, Shin A, Lee YJ. Use of sedative-hypnotics and the risk of Alzheimer’s dementia: a retrospective cohort study. PLoS One. 2018;13(9):e0204413.

    PubMed  PubMed Central  Google Scholar 

  24. Cheng HT, Lin FJ, Erickson SR, Hong JL, Wu CH. The association between the use of zolpidem and the risk of Alzheimer’s disease among older people. J Am Geriatr Soc. 2017;65(11):2488–95.

    PubMed  Google Scholar 

  25. Gray SL, Dublin S, Yu O, Walker R, Anderson M, Hubbard RA, et al. Benzodiazepine use and risk of incident dementia or cognitive decline: prospective population based study. BMJ. 2016 Feb 2;352:i90.

    PubMed  PubMed Central  Google Scholar 

  26. Tapiainen V, Taipale H, Tanskanen A, Tiihonen J, Hartikainen S, Tolppanen AM. The risk of Alzheimer’s disease associated with benzodiazepines and related drugs: a nested case-control study. Acta Psychiatr Scand. 2018;138(2):91–100.

    CAS  PubMed  Google Scholar 

  27. Biétry FA, Pfeil AM, Reich O, Schwenkglenks M, Meier CR. Benzodiazepine use and risk of developing Alzheimer's disease: a case-control study based on Swiss claims data. CNS Drugs. 2017;31(3):245–51.

    PubMed  Google Scholar 

  28. Hessmann P, Dodel R, Baum E, Müller MJ, Paschke G, Kis B, et al. Prescription of benzodiazepines and related drugs in patients with mild cognitive deficits and Alzheimer’s disease. Pharmacopsychiatry. 2019;52(2):84–91.

    CAS  PubMed  Google Scholar 

  29. •• Pilipenko V, Narbute K, Pupure J, Rumaks J, Jansone B, Klusa V. Neuroprotective action of diazepam at very low and moderate doses in Alzheimer’s disease model rats. Neuropharmacology. 2019;144:319–26. This study demonstrates the potential neuroprotective effect of the benzodiazepines in animal AD models.

    CAS  PubMed  Google Scholar 

  30. Tohgi H, Abe T, Takahashi S, Kimura M, Takahashi J, Kikuchi T. Concentrations of serotonin and its related substances in the cerebrospinal fluid in patients with Alzheimer type dementia. Neurosci Lett. 1992;141(1):9–12.

    CAS  PubMed  Google Scholar 

  31. Mishima K, Tozawa T, Satoh K, Matsumoto Y, Hishikawa Y, Okawa M. Melatonin secretion rhythm disorders in patients with senile dementia of Alzheimer’s type with disturbed sleep-waking. Biol Psychiatry. 1999;45(4):417–21.

    CAS  PubMed  Google Scholar 

  32. •• Wade AG, Farmer M, Harari G, Fund N, Laudon M, Nir T, et al. Add-on prolonged-release melatonin for cognitive function and sleep in mild to moderate Alzheimer’s disease: a 6-month, randomized, placebo-controlled, multicenter trial. Clin Interv Aging. 2014;9:947. This study shows the beneficial effects of long-term add-on prolonged-release melatonin use on sleep and cognition.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Camargos EF, Louzada LL, Quintas JL, Naves JO, Louzada FM, Nobrega OT. Trazodone improves sleep parameters in Alzheimer disease patients: a randomized, double-blind, and placebo-controlled study. Am J Geriatr Psychiatry. 2014;22:1565–74.

    PubMed  Google Scholar 

  34. Camargos EF, Quintas JL, Louzada LL, Naves JO, Furioso AC, Nobrega OT. Trazodone and cognitive performance in Alzheimer disease. J Clin Psychopharmacol. 2015;35:88–9.

    PubMed  Google Scholar 

  35. Walsh JK. Enhancement of slow wave sleep: implications for insomnia. J Clin Sleep Med. 2009;5:S27–32.

    PubMed  PubMed Central  Google Scholar 

  36. Suzuki H, Yamadera H, Nakamura S, Endo S. Effects of trazodone and imipramine on the biological rhythm: an analysis of sleep EEG and body core temperature. J Nippon Med Sch. 2002;69:333–41.

    PubMed  Google Scholar 

  37. Mouret J, Lemoine P, Minuit MP, Benkelfat C, Renardet M. Effects of trazodone on the sleep of depressed subjects-a polygraphic study. Psychopharmacology. 1988;95:37–43.

    Google Scholar 

  38. Roh JH, Jiang H, Finn MB, Stewart FR, Mahan TE, Cirrito JR. Potential role of orexin and sleep modulation in the pathogenesis of Alzheimer’s disease. J Exp Med. 2014;211:2487–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Halliday M, Radford H, Zents KAM, Molloy C, Moreno JA, Verity NC, et al. Repurposed drugs targeting eIF2alpha-P-mediated translational repression prevent neurodegeneration in mice. Brain. 2017;140:1768–83.

    PubMed  PubMed Central  Google Scholar 

  40. Moreno JA, Radford H, Peretti D, Steinert JR, Verity N, Martin MG, et al. Sustained translational repression by eIF2alpha-P mediatesnprion neurodegeneration. Nature. 2012;485:507–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Nijholt DA, van Haastert ES, Rozemuller AJ, Scheper W, Hoozemans JJ. The unfolded protein response is associated with early tau pathology in the hippocampus of tauopathies. J Pathol. 2012;226:693–702.

    CAS  PubMed  Google Scholar 

  42. Stutzbach LD, Xie SX, Naj AC, Albin R, Gilman S, Group PSPGS, et al. The unfolded protein response is activated in disease-affected brain regions in progressive supranuclear palsy and Alzheimer’s disease. Acta Neuropathol Commun. 2013;1:31.

    PubMed  PubMed Central  Google Scholar 

  43. Naidoo N, Giang W, Galante RJ, Pack AI. Sleep deprivation induces the unfolded protein response in mouse cerebral cortex. J Neurochem. 2005;92:1150–7.

    CAS  PubMed  Google Scholar 

  44. Sharpley AL, Cowen PJ. Effect of pharmachologic treatments on the sleep of depressed patients. Biol Psychiatry. 1995;37:85–98.

    CAS  PubMed  Google Scholar 

  45. Moskowitz H, Burns MM. Cognitive performance in geriatric subjects after acute treatment with antidepressants. Neuropsychobiology. 15(Suppl 1):38–43.

    PubMed  Google Scholar 

  46. Auger RR, Burgess HJ, Emens JS, Deriy LV, Thomas SM, Sharkey KM. Clinical practice guideline for the treatment of intrinsic circadian rhythm sleepwake disorders: advanced sleep-wake phase disorder (ASWPD), delayed sleep-wake phase disorder (DSWPD), non-24-hour sleep-wake rhythm disorder (N24SWD), and irregular sleepwake rhythm disorder (ISWRD). An update for 2015: an American Academy of Sleep Medicine Clinical Practice Guideline. J Clin Sleep Med. 2015;11:1199–36.

    PubMed  PubMed Central  Google Scholar 

  47. Vitiello MV, Borson S. Sleep disturbances in patients with Alzheimer’s disease: epidemiology, pathophysiology and treatment. CNS Drugs. 2001;15(10):777–96.

    CAS  PubMed  Google Scholar 

  48. Coogan AN, Schutova B, Husung S, et al. The circadian system in Alzheimer’s disease: disturbances, mechanisms, and opportunities. Biol Psychiatry. 2013;74(5):333–9.

    PubMed  Google Scholar 

  49. Gnanasekaran G. “Sundowning” as a biological phenomenon: current understandings and future directions: an update. Aging Clin Exp Res. 2016;28(3):383–92.

    PubMed  Google Scholar 

  50. Bliwise DL. Sleep disorders in Alzheimer’s disease and other dementias. Clin Cornerstone. 2004;6(Suppl 1A):S16–28.

    PubMed  Google Scholar 

  51. Hope T, Keene J, Gedling K, Fairburn CG, Jacoby R. Predictors of institutionalization for people with dementia living at home with a carer. International Journal of Geriatric Psychiatry. 1998;13:682–90.

    CAS  PubMed  Google Scholar 

  52. •• Homolak J, Mudrovčić M, Vukić B, Toljan K. Circadian rhythm and Alzheimer’s disease. Med Sci (Basel). 2018;6(3):E52. https://doi.org/10.3390/medsci6030052. This article focuses on the bi-directional relationship between the neurodegenerative process of Alzheimer disease and the disruption of circadian rhythm.

    Article  CAS  Google Scholar 

  53. Van Erum J, Van Dam D, De Deyn PP. Sleep and Alzheimer’s disease: a pivotal role for the suprachiasmatic nucleus. Sleep Med Rev. 2018;40:17–27.

    PubMed  Google Scholar 

  54. Song Q, Feng G, Huang Z, Chen X, Chen Z, Ping Y. Aberrant axonal arborization of PDF neurons induced by Abeta42-mediated JNK activation underlies sleep disturbance in an Alzheimer’s model. Mol Neurobiol. 2017;54(8):6317–28.

    CAS  PubMed  Google Scholar 

  55. Kang JE, Lim MM, Bateman RJ, et al. Amyloid-beta dynamics are regulated by orexin and the sleep-wake cyclee. Science. 2009;326(5955):1005–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Blanks JC, Hinton DR, Sadun AA, Miller CA. Retinal ganglion cell degeneration in Alzheimer’s disease. Brain Res. 1989;501(2):364–72.

    CAS  PubMed  Google Scholar 

  57. Sadun AA, Bassi CJ. Optic nerve damage in Alzheimer’s disease. Ophthalmology. 1990;97(1):9–17.

    CAS  PubMed  Google Scholar 

  58. Hinton DR, Sadun AA, Blanks JC, Miller CA. Optic-nerve degeneration in Alzheimer’s disease. N Engl J Med. 1986;315(8):485–7.

    CAS  PubMed  Google Scholar 

  59. La Morgia C, Ross-Cisneros FN, Koronyo Y, Hannibal J, Gallassi R, Cantalupo G, et al. Melanopsin retinal ganglion cell loss in Alzheimer disease. Ann Neurol. 2016;79(1):90–109.

    PubMed  Google Scholar 

  60. Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science. 2002;295(5557):1070–3.

    CAS  PubMed  Google Scholar 

  61. Hattar S, Liao HW, Takao M, Berson DM, Yau KW. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science. 2002;295(5557):1065–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sadun AA, Schaechter JD, Smith LE. A retinohypothalamic pathway in man: light mediation of circadian rhythms. Brain Res. 1984;302:371–7.

    CAS  PubMed  Google Scholar 

  63. Hannibal J, Fahrenkrug J. Neuronal input pathways to the brain’s biological clock and their functional significance. Adv Anat Embryol Cell Biol. 2006;182:1–71.

    CAS  PubMed  Google Scholar 

  64. • Brown CA, Berry R, Tan MC, Khoshia A, Turlapati L, Swedlove F. A critique of the evidence base for non-pharmacological sleep interventions for persons with dementia. Dementia (London). 2013;12(2):210–37. This review provides a critical analysis about the literature on non-pharmacological interventions to reduce disordered sleep in persons with dementia.

    Google Scholar 

  65. Sinoo MM, Van Hoof J, Kort HSM. Light conditions for older adults in the nursing home: assessment of environmental illuminances and colour temperature. Build Environ. 2001;46(10):1917–27.

    Google Scholar 

  66. Figueiro MG, Hamner R, Higgins P, Hornick T, Rea MS. Field measurements of light exposures and circadian disruption in two populations of older adults. J Alzheimers Dis. 2012;31(4):711–5.

    PubMed  PubMed Central  Google Scholar 

  67. Alessi CA, Yoon EJ, Schnelle JF, Al-Samarrai NR, Cruise PA. A randomized trial of a combined physical activity and environmental intervention in nursing home residents: do sleep and agitation improve? J Am Geriatr Soc. 1999;47(7):784–91.

    CAS  PubMed  Google Scholar 

  68. • Alessi CA, Martin JL, Webber AP, Cynthia Kim E, Harker JO, Josephson KR. Randomized, controlled trial of a nonpharmacological intervention to improve abnormal sleep/wake patterns in nursing home residents. J Am Geriatr Soc. 2005;53(5):803–10. This study showed the importance of non-pharmacological intervention and sleep hygiene techniques to improve the circadian rhythms in nursing homes.

    PubMed  Google Scholar 

  69. McCurry SM, Pike KC, Vitiello MV, Logsdon RG, Larson EB, Teri L. Increasing walking and bright light exposure to improve sleep in community-dwelling persons with Alzheimer’s disease: results of a randomized, controlled trial. J Am Geriatr Soc. 2011;59(8):1393–402.

    PubMed  PubMed Central  Google Scholar 

  70. McCurry SM, Gibbons LE, Logsdon RG, Vitiello MV, Teri L. Nighttime insomnia treatment and education for Alzheimer’s disease: a randomized, controlled trial. J Am Geriatr Soc. 2005;53(5):793–802.

    PubMed  Google Scholar 

  71. Gitlin LN, Kales HC, Lyketsos CG. Nonpharmacologic management of behavioral symptoms in dementia. JAMA. 2012;308(19):2020–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ooms S, Ju YE. Treatment of sleep disorders in dementia. Curr Treat Options Neurol. 2016;18(9):40.

    PubMed  PubMed Central  Google Scholar 

  73. Satlin A, Volicer L, Ross V, Herz L, Campbell S. Bright light treatment of behavioral and sleep disturbances in patients with Alzheimer’s disease. Am J Psychiatry. 1992;149(8):1028–32.

    CAS  PubMed  Google Scholar 

  74. Mishima K, Okawa M, Hishikawa Y, Hozumi S, Hori H, Takahashi K. Morning bright light therapy for sleep and behavior disorders in elderly patients with dementia. Acta Psychiatr Scand. 1994;89(1):1–7.

    CAS  PubMed  Google Scholar 

  75. Colenda CC, Cohen W, McCall WV, Rosenquist PB. Phototherapy for patients with Alzheimer disease with disturbed sleep patterns: results of a community-based pilot study. Alzheimer Dis Assoc Disord. 1997;11(3):175–8.

    CAS  PubMed  Google Scholar 

  76. Van Someren EJ, Kessler A, Mirmiran M, Swaab DF. Indirect bright light improves circadian rest-activity rhythm disturbances in demented patients. Biol Psychiatry. 1997 May 1;41(9):955–63.

    PubMed  Google Scholar 

  77. Mishima K, Hishikawa Y, Okawa M. Randomized, dim light controlled, crossover test of morning bright light therapy for rest-activity rhythm disorders in patients with vascular dementia and dementia of Alzheimer’s type. Chronobiol Int. 1998;15(6):647–54.

    CAS  PubMed  Google Scholar 

  78. Lyketsos CG, Lindell Veiel L, Baker A, Steele C. A randomized, controlled trial of bright light therapy for agitated behaviors in dementia patients residing in long-term care. Int J Geriatr Psychiatry. 1999;14(7):520–5.

    CAS  PubMed  Google Scholar 

  79. Yamadera H, Ito T, Suzuki H, Asayama K, Ito R, Endo S. Effects of bright light on cognitive and sleep-wake (circadian) rhythm disturbances in Alzheimer-type dementia. Psychiatry Clin Neurosci. 2000;54(3):352–3.

    CAS  PubMed  Google Scholar 

  80. Ito T, Yamadera H, Ito R, Suzuki H, Asayama K, Endo S. Effects of vitamin B12 on bright light on cognitive and sleep-wake rhythm in Alzheimer-type dementia. Psychiatry Clin Neurosci. 2001;55(3):281–2.

    CAS  PubMed  Google Scholar 

  81. Ancoli-Israel S, Martin JL, Kripke DF, Marler M, Klauber MR. Effect of light treatment on sleep and circadian rhythms in demented nursing home patients. J Am Geriatr Soc. 2002;50(2):282–9.

    PubMed  PubMed Central  Google Scholar 

  82. Ancoli-Israel S, Gehrman P, Martin JL, Shochat T, Marler M, Corey-Bloom J, et al. Increased light exposure consolidates sleep and strengthens circadian rhythms in severe Alzheimer’s disease patients. Behav Sleep Med. 2003a;1(1):22–36.

    PubMed  Google Scholar 

  83. Ancoli-Israel SL, Gehrman P, Martin JL, Shochat T, Marler M, Corey-Bloom J, et al. Levi Effect of light on agitation in institutionalized patients with severe Alzheimer disease. Am J Geriatr Psychiatry. 2003b;11(2):194–203.

    PubMed  Google Scholar 

  84. Fetveit A, Skjerve A, Bjorvatn B. Bright light treatment improves sleep in institutionalized elderly – an open trial. Int J Geriatr Psychiatry. 2003;18(6):520–6.

    PubMed  Google Scholar 

  85. Fontana Gasio P, Kräuchi K, Cajochen C, Ev S, Amrhein I, Pache M, et al. Dawn-dusk simulation light therapy of disturbed circadian rest-activity cycles in demented elderly. Exp Gerontol. 2003;38(1–2):207–26.

    PubMed  Google Scholar 

  86. Skjerve A, Holsten F, Aarsland D, Bjorvatn B, Nygaard HA, Johansen IM. Improvement in behavioral symptoms and advance of activity acrophase after short-term bright light treatment in severe dementia. Psychiatry Clin Neurosci. 2004;58(4):343–7.

    PubMed  Google Scholar 

  87. Dowling GA, Burr RL, Van Someren EJ, et al. Melatonin and bright-light treatment for rest-activity disruption in institutionalized patients with Alzheimer’s disease. J Am Geriatr Soc. 2008;56:239–46.

    PubMed  Google Scholar 

  88. Dowling GA, Hubbard EM, Mastick J, Luxenberg JS, Burr RL, Van Someren EJ. Effect of morning bright light treatment for rest–activity disruption in institutionalized patients with severe Alzheimer’s disease. Int Psychogeriatr. 2005a;17(2):221–36.

    PubMed  PubMed Central  Google Scholar 

  89. Riemersma-van der Lek RF, Swaab DF, Twisk J, Hol EM, Hoogendijk WJ, Van Someren EJ. Effect of bright light and melatonin on cognitive and noncognitive function in elderly residents of group care facilities: a randomized controlled trial. JAMA. 2008;299(22):2642–55.

    CAS  PubMed  Google Scholar 

  90. Burns A, Allen H, Tomenson B, Duignan D, Byrne J. Bright light therapy for agitation in dementia: a randomized controlled trial. Int Psychogeriatr. 2009;21(4):711–21.

    PubMed  Google Scholar 

  91. Dowling GA, Mastick J, Hubbard EM, Luxenberg JS, Burr RL. Effect of timed bright light treatment for rest-activity disruption in institutionalized patients with Alzheimer’s disease. Int J Geriatr Psychiatry. 2005b;20(8):738–43.

    PubMed  PubMed Central  Google Scholar 

  92. Sloane PD, Figueiro M, Garg S, Cohen LW, Reed D, Williams CS, et al. Effect of home-based light treatment on persons with dementia and their caregivers. Light Res Technol. 2015;47(2):161–76.

    CAS  PubMed  Google Scholar 

  93. Sekiguchi H, Iritani S, Fujita K. Bright light therapy for sleep disturbance in dementia is most effective for mild to moderate Alzheimer’s type dementia: a case series. Psychogeriatrics. 2017;17(5):275–81.

    PubMed  Google Scholar 

  94. Forbes D, Blake CM, Thiessen EJ, Peacock S, Hawranik P. Light therapy for improving cognition, activities of daily living, sleep, challenging behaviour, and psychiatric disturbances in dementia. Cochrane Database Syst Rev. 2014;(2):CD003946. This review concluded that insufficient evidence justified bright light therapy in dementia patients.

  95. •• van Maanen A, Meijer AM, van der Heijden KB, Oort FJ. The effects of light therapy on sleep problems: a systematic review and meta-analysis. Sleep Med Rev. 2016;29:52–62. This recent meta-analysis review the effect of light therapy on sleep problems in general and on specific types of sleep problems, showing significant efficacy of bright light therapy for sleep problems in general, particularly for circadian outcomes and insomnia symptoms.

    PubMed  Google Scholar 

  96. Asayama K,Yamadera H, Ito T, Suzuki H, KudoY, Endo S. Double blind study of melatonin effects on the sleep-wake rhythm, cognitive and non-cognitive functions in Alzheimer type dementia. Journal of Nippon Medical School = Nippon Ika Daigaku zasshi 2003; 70:334–341.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Ferini-Strambi MD.

Ethics declarations

Conflict of Interest

Dr. Andrea Galbiati declares that she has no conflict of interest. Dr. Francesca Casoni declares that she has no conflict of interest. Dr. Maria Salsone declares that she has no conflict of interest. Dr. Luigi Ferini-Strambi reports personal fees from UCB Pharma, personal fees from Lundbeck, personal fees from Pfizer, personal fees from Italfarmaco, personal fees from Valeas, personal fees from Angelini, personal fees from Eisai, and personal fees from Philips Respironics outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Sleep Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferini-Strambi, L., Galbiati, A., Casoni, F. et al. Therapy for Insomnia and Circadian Rhythm Disorder in Alzheimer Disease. Curr Treat Options Neurol 22, 4 (2020). https://doi.org/10.1007/s11940-020-0612-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-020-0612-z

Keywords

Navigation