Skip to main content

Advertisement

Log in

Immunotherapy in Narcolepsy

  • Sleep Disorders (A Iranzo, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Abstract

Purpose of review

Narcolepsy type 1 (NT1) is a chronic and disabling sleep disorder due to the loss of hypocretinergic neurons in the lateral hypothalamus pathophysiologically linked to an autoimmune process. Current treatment is symptomatic, and no cure is available to date. Immunotherapy is considered a promising future therapeutic option, and this review discusses the rationale for immunotherapy in narcolepsy, current evidences of its effects, outcome measures, and future directions.

Recent findings

A limited number of case reports and uncontrolled small case series have reported the effect of different immunotherapies in patients with NT1. These studies were mainly based on the use of intravenous immunoglobulin (IVig), followed by corticosteroids, plasmapheresis, and monoclonal antibodies. Although initial reports showed an improvement of symptoms, particularly when patients were treated close to disease onset, other observations have not confirmed these results. Inadequate timing of treatment, placebo effects, and spontaneous improvement due to the natural disease course can account for these contrasting findings. Moreover, clear endpoints and standardized outcome measures have not been used and are currently missing in the pediatric population.

Summary

On the basis of the available data, there are no enough evidences to support the use of immunotherapy in NT1. Randomized, controlled studies using clear endpoints and new outcome measures are needed to achieve a definitive answer about the usefulness of these treatments in narcolepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hublin C, Partinen M, Kaprio J, Koskenvuo M, Guilleminault C. Epidemiology of narcolepsy. Sleep. 1994;17:S7–S12.

    PubMed  CAS  Google Scholar 

  2. Ohayon MM, Priest RG, Zulley J, Smirne S, Paiva T. Prevalence of narcolepsy symptomatology and diagnosis in the European general population. Neurology. 2002;58(12):1826–33.

    PubMed  CAS  Google Scholar 

  3. • Bassetti CLA, Adamantidis A, Burdakov D, Han F, Gay S, Kallweit U, et al. Narcolepsy — clinical spectrum, aetiopathophysiology, diagnosis and treatment. Nat Rev Neurol. 2019;15(9):519–39. https://doi.org/10.1038/s41582-019-0226-9. Comprehensive, up-to-date review on the clinical spectrum, aetiopathophysiology, diagnosis and treatment of narcolepsy.

    Article  PubMed  Google Scholar 

  4. American Academy of Sleep Medicine. The international classification of sleep disorders (ICSD-3). Am Acad Sleep Med. 2014;146(5):1387–94.

    Google Scholar 

  5. Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin X, et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell. 1999;98(3):365–76.

    CAS  PubMed  Google Scholar 

  6. Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999;98(4):437–51.

    CAS  PubMed  Google Scholar 

  7. Hara J, Beuckmann CT, Nambu T, Willie JT, Chemelli RM, Sinton CM, et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron. 2001;30(2):345–54.

    PubMed  CAS  Google Scholar 

  8. Nishino S, Ripley B, Overeem S, Lammers GJ, Mignot E. Hypocretin (orexin) deficiency in human narcolepsy. Lancet. 2000;355(9197):39–40.

    CAS  PubMed  Google Scholar 

  9. Mignot E, Lammers GJ, Ripley B, Okun M, Nevsimalova S, Overeem S, et al. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch Neurol. 2002;59(10):1553–62.

    PubMed  Google Scholar 

  10. Szabo ST, Thorpy MJ, Mayer G, Peever JH, Kilduff TS. Neurobiological and immunogenetic aspects of narcolepsy: implications for pharmacotherapy. Sleep Med Rev. 2019;43:23–36. https://doi.org/10.1016/j.smrv.2018.09.006.

    Article  PubMed  Google Scholar 

  11. Andlauer O, Moore H, Hong S-C, Dauvilliers Y, Kanbayashi T, Nishino S, et al. Predictors of hypocretin (orexin) deficiency in narcolepsy without cataplexy. Sleep. 2012;35:1247–55.

    PubMed  PubMed Central  Google Scholar 

  12. Pizza F, Vandi S, Liguori R, Parchi P, Avoni P, Mignot E, et al. Primary progressive narcolepsy type 1: the other side of the coin. Neurology. 2014;83(23):2189–90. https://doi.org/10.1212/WNL.0000000000001051.

    Article  PubMed  PubMed Central  Google Scholar 

  13. •• Lopez R, Barateau L, Evangelista E, Chenini S, Robert P, Jaussent I, et al. Temporal changes in the cerebrospinal fluid level of hypocretin-1 and histamine in narcolepsy. Sleep. 2017;40:1–7. Shows that in few patients, narcolepsy symptoms and CSF markers change over time suggesting that in cataplexy without baseline hypocretin deficiency, CSF markers should be monitored over time with potential for immune therapies in early stages to try limiting hypocretin neuron loss.

    Google Scholar 

  14. Bonakis A, Howard RS, Ebrahim IO, Merritt S, Williams A. REM sleep behaviour disorder (RBD) and its associations in young patients. Sleep Med. 2009;10:641–5. https://doi.org/10.1016/j.sleep.2008.07.008.

    Article  PubMed  Google Scholar 

  15. Mignot E, Hayduk R, Black J, Grumet FC, Guilleminault C. HLA DQB1*0602 is associated with cataplexy in 509 narcoleptic patients. Sleep. 1997;20(11):1012–20.

    PubMed  CAS  Google Scholar 

  16. Koepsell TD, Longstreth WT, Ton TGN. Medical exposures in youth and the frequency of narcolepsy with cataplexy: a population-based case-control study in genetically predisposed people. J Sleep Res. 2010;19(1 Pt 1):80–6.

    PubMed  Google Scholar 

  17. Aran A, Lin L, Nevsimalova S, Plazzi G, Hong SC, Weiner K, et al. Elevated anti-streptococcal antibodies in patients with recent narcolepsy onset. Sleep. 2009;32:979–83.

    PubMed  PubMed Central  Google Scholar 

  18. Arango MT, Kivity S, Shoenfeld Y. Is narcolepsy a classical autoimmune disease? Pharmacol Res. 2015;92:6e12.

    Google Scholar 

  19. Han F, Lin L, Warby SC, Faraco J, Li J, Dong SX, et al. Narcolepsy onset is seasonal and increased following the 2009 H1N1 pandemic in China. Ann Neurol. 2011;70:410–7.

    PubMed  Google Scholar 

  20. Partinen M, Saarenpää-Heikkilä O, Ilveskoski I, Hublin C, Linna M, Olsén P, et al. Increased incidence and clinical picture of childhood narcolepsy following the 2009 H1N1 pandemic vaccination campaign in Finland. PLoS One. 2012;7(3):e33723. https://doi.org/10.1371/journal.pone.0033723.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Nohynek H, Jokinen J, Partinen M, Vaarala O, Kirjavainen T, Sundman J, et al. AS03 adjuvanted AH1N1 vaccine associated with an abrupt increase in the incidence of childhood narcolepsy in Finland. PLoS One. 2012;7:e33536.

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Heier MS, Gautvik KM, Wannag E, Bronder KH, Midtlyng E, Kamaleri Y, et al. Incidence of narcolepsy in Norwegian children and adolescents after vaccination against H1N1 influenza a. Sleep Med. 2013;14:867–71.

    PubMed  CAS  Google Scholar 

  23. Kornum BR, Knudsen S, Ollila HM, Pizza F, Jennum PJ, Dauvilliers Y, et al. Narcolepsy. Nat Rev Dis Primers. 2017;3:16100. https://doi.org/10.1038/nrdp.2016.100.

    Article  PubMed  Google Scholar 

  24. • Bonvalet M, Ollila HM, Ambati A, Mignot E. Autoimmunity in narcolepsy. Curr Opin Pulm Med. 2017;23(6):522–9. https://doi.org/10.1097/MCP.0000000000000426. Useful review of autoimmune mechanisms in narcolepsy.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Kornum BR, Burgdorf KS, Holm A, Ullum H, Jennum P, Knudsen S. Absence of autoreactive CD4+ T-cells targeting HLA-DQA1*01:02/DQB1*06:02 restricted hypocretin/orexin epitopes in narcolepsy type 1 when detected by EliSpot. J Neuroimmunol. 2017;309:7–11.

    PubMed  CAS  Google Scholar 

  26. Ramberger M, Högl B, Stefani A, Mitterling T, Reindl M, Lutterotti A. CD4+ T-cell reactivity to orexin/hypocretin in patients with narcolepsy type 1. Sleep. 2017;40(3). https://doi.org/10.1093/sleep/zsw070.

  27. Moresco M, Lecciso M, Ocadlikova D, Filardi M, Melzi S, Kornum BR, et al. Flow cytometry analysis of T-cell subsets in cerebrospinal fluid of narcolepsy type 1 patients with long-lasting disease. Sleep Med. 2018;44:53–60. https://doi.org/10.1016/j.sleep.2017.11.1150.

    Article  PubMed  Google Scholar 

  28. •• Latorre D, Kallweit U, Armentani E, Foglierini M, Mele F, Cassotta A, et al. T cells in patients with narcolepsy target self-antigens of hypocretin neurons. Nature. 2018;562:63e8. First paper to show the presence of autoreactive CD8+ and CD4+ T cells in NT1 and NT2.

    Google Scholar 

  29. •• Luo G, Ambati A, Lin L, Bonvalet M, Partinen M, Ji X, et al. Autoimmunity to hypocretin and molecular mimicry to flu in type 1 narcolepsy. Proc Natl Acad Sci U S A. 2018;115(52):E12323–32. https://doi.org/10.1073/pnas.1818150116. Support the presence of cross-reactive CD4 T cells to hypocretin and the hemagglutinin (HA) flu protein of the pandemic 2009/2010 H1N1 influenza A virus in NT1 patients.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Schinkelshoek MS, Fronczek R, Kooy-Winkelaar EMC, Petersen J, Reid HH, van der Heide A, et al. H1N1 hemagglutinin-specific HLA-DQ6-restricted CD4+ T cells can be readily detected in narcolepsy type 1 patients and healthy controls. J Neuroimmunol. 2019;332:167–75. https://doi.org/10.1016/j.jneuroim.2019.04.009.

    Article  PubMed  CAS  Google Scholar 

  31. Mignot E, Ambati A, Luo G. Response to "H1N1 hemagglutinin-specific HLA-DQ6-restricted CD4+ T cells can be readily detected in narcolepsy type 1patients and healthy controls". J Neuroimmunol. 2019;333:476959. https://doi.org/10.1016/j.jneuroim.2019.04.019.

    Article  PubMed  CAS  Google Scholar 

  32. Tafti M, Lammers GJ, Dauvilliers Y, Overeem S, Mayer G, Nowak J, et al. Narcolepsy-associated HLA class I alleles implicate cell-mediated cytotoxicity. Sleep. 2016;39(3):581–7.

    PubMed  PubMed Central  Google Scholar 

  33. Ollila HM, Ravel JM, Han F, Faraco J, Lin L, Zheng X, et al. HLA-DPB1 and HLA class i confer risk of and protection from narcolepsy. Am J Hum Genet. 2015;96(1):136–46. https://doi.org/10.1016/j.ajhg.2014.12.010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Bernard-Valnet R, Yshii L, Quériault C, Nguyen XH, Arthaud S, Rodrigues M, et al. CD8 T cell-mediated killing of orexinergic neurons induces a narcolepsy-like phenotype in mice. Proc Natl Acad Sci U S A. 2016;113(39):10956–61. https://doi.org/10.1073/pnas.1603325113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. •• Pedersen NW, Holm A, Kristensen NP, Bjerregaard AM, Bentzen AK, Marquard AM, et al. CD8 + T cells from patients with narcolepsy and healthy controls recognize hypocretin neuron-specific antigens. Nat Commun. 2019;10(1):837. https://doi.org/10.1038/s41467-019-08774-1. Support the involvement of CD8 T cells in narcolepsy type 1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Liblau RS. Put to sleep by immune cells. Nature. 2018;562(7725):46–8. https://doi.org/10.1038/d41586-018-06666-w.

    Article  PubMed  CAS  Google Scholar 

  37. Lund FE, Randall TD. Effector and regulatory B cells: modulators of CD4+ T cell immunity. Nat Rev Immunol. 2010;10(4):236–47. https://doi.org/10.1038/nri2729.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Knudsen S, Mikkelsen JD, Jennum P. Antibodies in narcolepsy-cataplexy patient serum bind to rat hypocretin neurons. Neuroreport. 2007;18(1):77–9.

    PubMed  Google Scholar 

  39. Martínez-Rodríguez JE, Sabater L, Graus F, Iranzo A, Santamaria J. Evaluation of hypothalamic-specific autoimmunity in patients with narcolepsy. Sleep. 2007;30(1):27–8.

    PubMed  Google Scholar 

  40. Overeem S, Verschuuren JJ, Fronczek R, Schreurs L, den Hertog H, Hegeman-Kleinn IM, et al. Immunohistochemical screening for autoantibodies against lateral hypothalamic neurons in human narcolepsy. J Neuroimmunol. 2006;174(1–2):187–91.

    PubMed  CAS  Google Scholar 

  41. Black JL 3rd, Silber MH, Krahn LE, Fredrickson PA, Pankratz VS, Avula R, et al. Analysis of hypocretin (orexin) antibodies in patients with narcolepsy. Sleep. 2005;28(4):427–31.

    PubMed  Google Scholar 

  42. Tanaka S, Honda Y, Inoue Y, Honda M. Detection of autoantibodies against hypocretin, hcrtr1, and hcrtr2 in narcolepsy: anti-hcrt system antibody in narcolepsy. Sleep. 2006;29(5):633–8.

    PubMed  Google Scholar 

  43. Black JL 3rd, Krahn LE, Pankratz VS, Silber M. Search for neuron-specific and nonneuron-specific antibodies in narcoleptic patients with and without HLA DQB1*0602. Sleep. 2002;25(7):719–23.

    PubMed  Google Scholar 

  44. Cvetkovic-Lopes V, Bayer L, Dorsaz S, Maret S, Pradervand S, Dauvilliers Y, et al. Elevated Tribbles homolog 2-specific antibody levels in narcolepsy patients. J Clin Invest. 2010;120(3):713–9. https://doi.org/10.1172/JCI41366.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Kawashima M, Lin L, Tanaka S, Jennum P, Knudsen S, Nevsimalova S, et al. Anti-tribbles homolog 2 (TRIB2) autoantibodies in narcolepsy are associated with recent onset of cataplexy. Sleep. 2010;33(7):869–74.

    PubMed  PubMed Central  Google Scholar 

  46. Toyoda H, Tanaka S, Miyagawa T, Honda Y, Tokunaga K, Honda M. Anti-tribbles homolog 2 autoantibodies in Japanese patients with narcolepsy. Sleep. 2010;33(7):875–8.

    PubMed  PubMed Central  Google Scholar 

  47. Lind A, Ramelius A, Olsson T, Arnheim-Dahlström L, Lamb F, Khademi M, et al. A/H1N1 antibodies and TRIB2 autoantibodies in narcolepsy patients diagnosed in conjunction with the Pandemrix vaccination campaign in Sweden 2009-2010. J Autoimmun. 2014;50:99–106. https://doi.org/10.1016/j.jaut.2014.01.031.

    Article  PubMed  CAS  Google Scholar 

  48. Tanaka S, Honda Y, Honda M, Yamada H, Honda K, Kodama T. Anti-tribbles pseudokinase 2 (TRIB2)-immunization modulates hypocretin/ orexin neuronal functions. Sleep. 2017;40(1). https://doi.org/10.1093/sleep/zsw036.

  49. Ahmed SS, Volkmuth W, Duca J, Corti L, Pallaoro M, Pezzicoli A, et al. Antibodies to influenza nucleoprotein cross-react with human hypocretin receptor 2. Sci Transl Med. 2015;7(294):294ra105. https://doi.org/10.1126/scitranslmed.aab2354.

    Article  PubMed  CAS  Google Scholar 

  50. Giannoccaro MP, Waters P, Pizza F, Liguori R, Plazzi G, Vincent A. Antibodies against hypocretin receptor 2 are rare in narcolepsy. Sleep. 2017;40(2). https://doi.org/10.1093/sleep/zsw056.

  51. Luo G, Lin L, Jacob L, Bonvalet M, Ambati A, Plazzi G, et al. Absence of anti-hypocretin receptor 2 autoantibodies in post pandemrix narcolepsy cases. PLoS One. 2017;12(12):e0187305. https://doi.org/10.1371/journal.pone.0187305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. • Abad VC, Guilleminault C. New developments in the management of narcolepsy. Nat. Sci. Sleep. 2017;9:39–57. https://doi.org/10.2147/NSS.S103467. Comprehensive review of current narcolepsy treatment.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chaigne B, Mouthon L. Mechanisms of action of intravenous immunoglobulin. Transfus Apher Sci. 2017;56:45–9. https://doi.org/10.1016/j.transci.2016.12.017.

    Article  PubMed  Google Scholar 

  54. Dauvilliers Y, Carlander B, Rivier F, Touchon J, Tafti M. Successful management of cataplexy with intravenous immunoglobulins at narcolepsy onset. Ann Neurol. 2004;56:905–8.

    PubMed  CAS  Google Scholar 

  55. Dauvilliers Y. Follow-up of four narcolepsy patients treated with intravenous immunoglobulins. Ann Neurol. 2006;60:153.

    PubMed  Google Scholar 

  56. Dauvilliers Y, Abril B, Mas E, Michel F, Tafti M. Normalization of hypocretin-1 in narcolepsy after intravenous immunoglobulin treatment. Neurology. 2009;73(16):1333–4. https://doi.org/10.1212/WNL.0b013e3181bd1344.

    Article  PubMed  CAS  Google Scholar 

  57. Plazzi G, Poli F, Franceschini C, Parmeggiani A, Pirazzoli P, Bernardi F, et al. Intravenous high-dose immunoglobulin treatment in recent onset childhood narcolepsy with cataplexy. J Neurol. 2008;255:1549–54.

    PubMed  Google Scholar 

  58. Knudsen S, Mikkelsen JD, Bang B, Gammeltoft S, Jennum PJ. Intravenous immunoglobulin treatment and screening for hypocretin neuron-specific autoantibodies in recent onset childhood narcolepsy with cataplexy. Neuropediatrics. 2010;41(5):217–22. https://doi.org/10.1055/s-0030-1267993.

    Article  PubMed  CAS  Google Scholar 

  59. Knudsen S, Biering-Sørensen B, Kornum BR, Petersen ER, Ibsen JD, Gammeltoft S, et al. Early IVIg treatment has no effect on post-H1N1 narcolepsy phenotype or hypocretin deficiency. Neurology. 2012;79(1):102–3. https://doi.org/10.1212/WNL.0b013e31825dce03.

    Article  PubMed  Google Scholar 

  60. Sarkanen T, Alén R, Partinen M. Transient impact of rituximab in H1N1 vaccination-associated narcolepsy with severe psychiatric symptoms. Neurologist. 2016;21(5):85–6. https://doi.org/10.1097/NRL.0000000000000099.

    Article  PubMed  Google Scholar 

  61. Valko PO, Khatami R, Baumann CR, Bassetti CL. No persistent effect of intravenous immunoglobulins in patients with narcolepsy with cataplexy. J Neurol. 2008;255:1900–3.

    PubMed  Google Scholar 

  62. Fronczek R, Verschuuren J, Lammers GJ. Response to intravenous immunoglobulins and placebo in a patient with narcolepsy with cataplexy. J Neurol. 2007;254:1607–8.

    PubMed  Google Scholar 

  63. •• Lecendreux M, Berthier J, Corny J, Bourdon O, Dossier C, Delclaux C. Intravenous immunoglobulin therapy in pediatric narcolepsy: a nonrandomized, open-label, controlled, longitudinal observational study. J Clin Sleep Med. 2017;13(3):441–53. https://doi.org/10.5664/jcsm.6500. Largest study on the efficacy of IVIg therapy in children with narcolepsy.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Pizza F, Franceschini C, Peltola H, Vandi S, Finotti E, Ingravallo F, et al. Clinical and polysomnographic course of childhood narcolepsy with cataplexy. Brain. 2013;136(Pt 12):3787–95. https://doi.org/10.1093/brain/awt277.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ruppert E, Zagala H, Chambe J, Comtet H, Kilic-Huck U, Lefebvre F, et al. Intravenous immunoglobulin therapy administered early after narcolepsy type 1 onset in three patients evaluated by clinical and polysomnographic follow-up. Behav Neurol. 2018;2018:1671072. https://doi.org/10.1155/2018/1671072.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lecendreux M, Maret S, Bassetti C, Mouren MC, Tafti M. Clinical efficacy of high-dose intravenous immunoglobulins near the onset of narcolepsy in a 10-year-old boy. J Sleep Res. 2003;12:347–8.

    PubMed  Google Scholar 

  67. Viste R, Soosai J, Vikin T, Thorsby PM, Nilsen KB, Knudsen S. Long-term improvement after combined immunomodulation in early post-H1N1 vaccination narcolepsy. Neurol Neuroimmunol NeuroInflammation. 2017;4:1–3.

    Google Scholar 

  68. Boehmer LN, Wu MF, John J, Siegel JM. Treatment with immunosuppressive and anti-inflammatory agents delays onset of canine genetic narcolepsy and reduces symptom severity. Exp Neurol. 2004;188:292–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  69. Reeves HM, Winters JL. The mechanisms of action of plasma exchange. Br J Haematol. 2014;164:342–51.

    PubMed  CAS  Google Scholar 

  70. Chen W, Black J, Call P, Mignot E. Late-onset narcolepsy presenting as rapidly progressing muscle weakness: response to plasmapheresis. Ann Neurol. 2005;58(3):489–90.

    PubMed  Google Scholar 

  71. Hecht M, Lin L, Kushida CA, Umetsu DT, Taheri S, Einen M, et al. Report of a case of immunosuppression with prednisone in an 8-year-old boy with an acute onset of hypocretin-deficiency narcolepsy. Sleep. 2003;26:809–10.

    PubMed  Google Scholar 

  72. Peraita-Adrados R, Romero-Martínez J, Guzmán-De Villoria JA, Lillo-Triguero L, Martínez-Ginés ML. Comorbidity of narcolepsy with cataplexy and transverse myelitis: a common autoimmune background? A case report. Sleep Med. 2017;33:167–70.

    PubMed  Google Scholar 

  73. Coelho FMS, Pradella-Hallinan M, Alves GR, Bittencourt LRA, Tufik S. Report of two narcoleptic patients with remission of hypersomnolence following use of prednisone. Arq Neuropsiquiatr. 2007;65(2A):336–7.

    PubMed  Google Scholar 

  74. Schatzberg SJ, Cutter-Schatzberg K, Nydam D, Barrett J, Penn R, Flanders J, et al. The effect of hypocretin replacement therapy in a 3-year-old Weimaraner with narcolepsy. J Vet Intern Med. 2004;18(4):586–8.

    PubMed  Google Scholar 

  75. Donjacour CEHM, Lammers GJ. A remarkable effect of alemtuzumab in a patient suffering from narcolepsy with cataplexy. J Sleep Res. 2012;21(4):479–80. https://doi.org/10.1111/j.1365-2869.2011.00985.x.

    Article  PubMed  Google Scholar 

  76. Guarnera C, Bramanti P, Mazzon E. Alemtuzumab: a review of efficacy and risks in the treatment of relapsing remitting multiple sclerosis. Ther Clin Risk Manag. 2017;13:871–9. https://doi.org/10.2147/TCRM.S134398.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Overeem S, van Nues SJ, van der Zande WL, Donjacour CE, van Mierlo P, Lammers GJ. The clinical features of cataplexy: a questionnaire study in narcolepsy patients with and without hypocretin-1 deficiency. Sleep Med. 2011;12(1):12–8.

    PubMed  Google Scholar 

  78. Kallweit U, Bassetti CLA, Oberholzer M, Fronczek R, Béguin M, Strub M, et al. Coexisting narcolepsy (with and without cataplexy) and multiple sclerosis: six new cases and a literature review. J Neurol. 2018;265(9):2071–8. https://doi.org/10.1007/s00415-018-8949-x.

    Article  PubMed  CAS  Google Scholar 

  79. Penner IK, Sivertsdotter EC, Celius EG, Fuchs S, Schreiber K, Berkö S, et al. Improvement in fatigue during natalizumab treatment is linked to improvement in depression and day-time sleepiness. Front Neurol. 2015;6:18. https://doi.org/10.3389/fneur.2015.00018.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Sater RA, Gudesblatt M, Kresa-Reahl K, Brandes DW, Sater P. NAPS-MS: natalizumab effects on parameters of sleep in patients with multiple sclerosis. Int J MS Care. 2016;18:177–82.

    PubMed  PubMed Central  Google Scholar 

  81. Onofrj M, Curatola L, Ferracci F, Fulgente T. Narcolepsy associated with primary temporal lobe B-cells lymphoma in a HLA DR2 negative subject. J Neurol Neurosurg Psychiatry. 1992;55(9):852–3.

    PubMed  PubMed Central  CAS  Google Scholar 

  82. Maski K, Steinhart E, Williams D, Scammell T, Flygare J, McCleary K, et al. Listening to the patient voice in narcolepsy: diagnostic delay, disease burden, and treatment efficacy. J Clin Sleep Med. 2017;13(3):419–25. https://doi.org/10.5664/jcsm.6494.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Dauvilliers Y, Beziat S, Pesenti C, Lopez R, Barateau L, Carlander B, et al. Measurement of narcolepsy symptoms the narcolepsy severity scale. Neurology. 2017;88(14):1358–65.

    PubMed  Google Scholar 

  84. Wang YG, Benmedjahed K, Lambert J, Evans CJ, Hwang S, Black J, et al. Assessing narcolepsy with cataplexy in children and adolescents: development of a cataplexy diary and the ESS-CHAD. Nat Sci Sleep. 2017;9:201–11. https://doi.org/10.2147/NSS.S140143.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Plazzi G, Ruoff C, Lecendreux M, Dauvilliers Y, Rosen CL, Black J, et al. Treatment of paediatric narcolepsy with sodium oxybate: a double-blind, placebo-controlled, randomised-withdrawal multicenter study and open-label investigation. Lancet Child Adolesc Health. 2018;2(7):483–94. https://doi.org/10.1016/S2352-4642(18)30133-0.

    Article  PubMed  Google Scholar 

  86. Gerashchenko D, Murillo-Rodriguez E, Lin L, Xu M, Hallett L, Nishino S, et al. Relationship between CSF hypocretin levels and hypocretin neuronal loss. Exp Neurol. 2003;184:1010–6.

    PubMed  CAS  Google Scholar 

  87. Luca G, Haba-Rubio J, Dauvilliers Y, Lammers GJ, Overeem S, Donjacour CE, et al. Clinical, polysomnographic and genome-wide association analyses of narcolepsy with cataplexy: a European narcolepsy network study. J Sleep Res. 2013;22:482–95.

    PubMed  Google Scholar 

  88. Passouant P, Billiard M. The evolution of narcolepsy with age. In: Guilleminault CDW, Passouant P, editors. Narcolepsy. New York: Spectrum Publications; 1976. p. 179–97.

    Google Scholar 

  89. Büchele F, Baumann CR, Poryazova R, Werth E, Valko PO. Remitting narcolepsy? Longitudinal observations in a hypocretin-deficient cohort. Sleep. 2018;41:1–9.

    Google Scholar 

  90. St-Amour I, Paré I, Alata W, Coulombe K, Ringuette-Goulet C, Drouin-Ouellet J, et al. Brain bioavailability of human intravenous immunoglobulin and its transport through the murine blood-brain barrier. J Cereb Blood Flow Metab. 2013;33(12):1983–92. https://doi.org/10.1038/jcbfm.2013.160.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Sternberg EM. Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat Rev Immunol. 2006;6(4):318–28. https://doi.org/10.1038/nri1810.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Negi VS, Elluru S, Sibéril S, Graff-Dubois S, Mouthon L, Kazatchkine MD, et al. Intravenous immunoglobulin: an update on the clinical use and mechanisms of action. J Clin Immunol. 2007;27(3):233–45.

    PubMed  CAS  Google Scholar 

  93. Danielson M, Reinsfelt B, Westerlind A, Zetterberg H, Blennow K, Ricksten S-E. Effects of methylprednisolone on blood-brain barrier and cerebral inflammation in cardiac surgery—a randomized trial. J Neuroinflammation. 2018;15(1):283. https://doi.org/10.1186/s12974-018-1318-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Nagel A, Hertl M, Eming R. B-cell-directed therapy for inflammatory skin diseases. J Invest Dermatol. 2009;129(2):289–301. https://doi.org/10.1038/jid.2008.192.

    Article  PubMed  CAS  Google Scholar 

  95. Rice GPA, Hartung HP, Calabresi PA. Anti-α4 integrin therapy for multiple sclerosis: mechanisms and rationale. Neurology. 2005;64:1336–42.

    PubMed  CAS  Google Scholar 

  96. Avasarala J. It’s time for combination therapies in multiple sclerosis. Innov Clin Neurosci. 2017;14:28–30.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Pizza MD, PhD.

Ethics declarations

Conflict of Interest

Maria Pia Giannoccaro declares she has no conflict of interest. Giombattista Sallemi declares he has no conflict of interest. Rocco Liguori declares he has no conflict of interest. Fabio Pizza declares he has no conflict of interest. report no disclosure. Giuseppe Plazzi participated to advisory board for Jazz, Bioprojet, and Idorsia.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Sleep Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giannoccaro, M.P., Sallemi, G., Liguori, R. et al. Immunotherapy in Narcolepsy. Curr Treat Options Neurol 22, 2 (2020). https://doi.org/10.1007/s11940-020-0609-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-020-0609-7

Keywords

Navigation